Tal Zaitsev

XXXXXXXXX

COE718: Media Centre Project implemented
on the RTX Real Time Kernel

Tal Zaitsev (xxxxxxxxx

Abstract The objective of the COE718 final project was
to design and implement a media centre mockup on an
ARM-based microcontroller, utilizing the embedded
system design methodologies learned in the course. The
development was done on the MCB1700 ARM Cotex-
M3 development board. The project successfully
demoed the concepts learned in class in an entertaining
fashion, and was—in some way-the cumulative result of
all of the labs performed in the course.

. INTRODUCTION

MBEDDED systems are some of the most hidden, yet

prevalent, gems of our modern society. Almost any
modern device, be it grid-powered, battery-powered, or
even solar-powered, has some form of computational
logic that controls its functionality. According to [1],
there is a projection that 31 billion microcontrollers will
be sold in 2018, with the number increasing to 50 billion
for 2019. To put this statistic into perspective, it is
expected that in 2019, there will be 6.5 microcontrollers
per each person on the whole planet.

Applications of embedded systems are endless, and
can be found in things such as microwaves, fridges, cars,
elevators, satellites, rockets, and even credit cards and
other RFID technology. With the recent advent of
Internet of Things technology, embedded systems will be
integrated into more and more devices, leading to a world
of limitless opportunities. To keep up with such a vast
and quickly-growing embedded systems market, it is
important that future designers understand how to fully
utilize the powerful technologies packed away in these
miniature systems. Not only is it in the best interest of
commercial companies that their products function
properly, but there are also critical applications of
embedded systems where public safety is at stake; some
examples are public defibrillators, autonomous vehicles,
air bag controllers in vehicles, and many more.

The COE718 Embedded Systems Design course
teaches what embedded systems are and how they are
implemented, with a focus on real-time operation. While
there are many microcontroller vendors and
architectures, the course uses the ARM Cortex-M3.
However, while the lab and project implementations use
this specific microcontroller, the code can be ported to
other processors.

) — tal.zaitsev@ryerson.ca

The purpose of the Media Centre project is to provide
students with the opportunity to design and implement a
complete project, from start to finish. The project outline
defines several high-level specifications that have to be
met by the final project: the project must implement a
picture gallery, sound player, and a game. The project
must also incorporate several peripherals in the process
of meeting these specifications, such as the use of a
graphic display over SPI, audio streaming over USB, AD
conversion of a potentiometer voltage, and GPIO
processing for the on-board joystick. The
implementation is performed on the MCB1700 board,
with an LPC1768 microcontroller, and is programmed in
the uVision IDE. The high-level architecture of the
project was implemented with the help of the Finite State
Machine paradigm. The game developed for this project
was Flappy Bird. The project was completed
successfully, and implemented all of the requirements.

Il. PAST WORK

Before this final project, there were four labs that
highlighted different features of the MCB1700 board, the
LPC1768 microcontroller, or ARM Cortex-M3
processor in general.

Lab 1 provided an introduction to uVision and the
overall project workflow of developing on the
MCB1700. This lab first introduced the graphic LCD
(GLCD), LED control through a middleware library, and
joystick input through the KBD middleware library. This
lab also demonstrated the use of the ADC peripheral for
reading the value of the on-board rotary potentiometer.
The final result of this lab was a system that read the
potentiometer value and the joystick state, and displayed
these values on the GLCD. It also lit up different LEDs,
depending on the joystick state.

Lab 2 was more involved, and introduced the concepts
of bit-banding, conditional execution, and barrel-shifting
[2]. Bit-banding is a method of accessing specific bits of
a register, without incurring the cost of accessing the full
register. There are many times in an embedded
environment when a single bit must be read or toggled.
Without bit-banding, a processor must load the full value
of a register, then AND or OR it with a mask, and then
finally store it again. Bit-banding provides a
workaround, by having specific address ranges of the

microcontroller act as a map for individual bits in another
address range. This allows the microcontroller to
perform atomic operations using the address of an
individual bit. Figure 1 visually explains how the
memory is mapped for this feature.

Labs 3 and 4 presented real-time (RT) operations using
the Keil RTX kernel. In these labs, different task
scheduling methods were investigated, with different
priority setting schemes. Concepts such as Round Robin
(RR) were compared to Rate Monotonic Scheduling
(RMS). The performance of these methods was
analyzed, and this work contributed to some key design
decisions for this project, such as how to structure the
high-level architecture of this final project.

Ox43FFFFFF

32ME Bit band alias
0x42000000
Ox41FFFFFF

31MB
0x40100000) .
0%40000000 1MB Bit band region

Peripheral 0.5GB

Ox23FFFFFF

32MB Bit band alias
0x22000000
Ox21FFFFFF e

0x20100000 7
0x20000000 1 MBBit band region <

Figure 1 — Bit-banding memory mapping®!

SRAM 0.5GB

I1l. METHODOLOGY

The high-level architecture of this project is defined as
a finite state machine (FSM), with pre-emptive
scheduling of two fundamental threads using the RTX
kernel. The two simple threads are used for input
handling and display/logic updates. The implementation
of the FSM is fully modular, making it very simple to add
or remove states.

A. RTX Threads

The heartbeat of the whole system are the two
scheduled threads: kbd_handler and display_update.
Each thread is scheduled by a virtual timer that splits up
the thread execution times into deterministic time slices.
Both threads are set up as infinite loops, and wait for an
event triggered by their respective timers. The purpose of
the kbd_handler thread is to handle joystick input. Since
reliable user input (through the joystick) is critical for
performance, this thread is scheduled to be triggered
every 5ms. For the same reason, this thread is also of a
higher priority than the display_update thread. This
allows the input handling thread to pre-empt the display
update thread in reliable and deterministic periods. It is
important to note that the input handling thread does not
perform any expensive calculations or display updates,

and only updates state variables, or other simple
variables.

The display_update thread is used to update the display
for the purpose of animations, and to handle any required
logic updates/calculations. This thread is the heavy-duty
worker of the project, and most execution time is spent
in this thread. The only time that this thread idles is when
a state does not require any display updates, which
happens in the MP3 player state; in this state, the screen
is only drawn once on state entry, and does not require
any further updates (this is explained in more detail in the
Design section). Due to the nature of this thread, its
period is set to 20ms. Depending on what the system is
currently doing, each cycle of the thread could finish well
within the 20 ms period (such as the MP3 player
example), or utilize most of the allotted period (e.g. when
playing the game). The relationship between the two
threads can be seen in Figure 2. In the figure, several
examples of the display_update thread with different
utilizations are given. The first thread cycle runs with a
higher utilization, and takes up most of the 20ms period.
The second has a lower utilization, possibly due to the
system now being in a state that requires less cycle-to-
cycle updates. The third and fourth cycles take have full
utilization of their periods. Note that the black triangle
symbolizes the end of a computation.

Priority
F 3

mputnandier | | [([[[OQTOQT00T00]
wpatenanaier | L[| 4[] ¢ LLLOOCOC

3 A

» t

10 20 30 40 50 60 70 80 90
ms ms ms ms ms ms ms ms ms

Figure 2 — RTX thread scheduling diagram

B. Finite State Machine

As mentioned, the overall architecture of the project
utilizes an FSM paradigm for easy maintenance and
configuration. This method of setting up each section of
the project allows for the encapsulation of each section.
This leads to cleaner code, by promoting code reuse, and
makes it easy to compartmentalize each section for
quicker development and debugging.

Each state is characterized by a state input handler, and
a state update handler. For most states, it is also
important to handle state transitions i.e. state entry/exit.
Therefore, state definitions are required to also define a

state entry handler, and can optionally define a state exit
handler as well. This type of transition handling presents
significant performance improvements to the overall
projects, as some tasks should only be executed on these
transitions. If the FSM did not have the capability to react
to transitions, the developer would be forced to create
separate state-tracking variables, leading to overhead
both in code development and program
execution/memory usage.

In this project, there are 4 states: main menu state,
image gallery state, MP3 player state, and game state.
Some of these states can have substates, but these are
defined within the scope of the state content and are not
handled by the overall FSM. The states, and their
possible transitions, can be found in Figure 3. As can be
seen in the figure, the only way to transition from one
state to another is by first going through the main menu
state. Therefore, the main menu can be thought of as a
visual directory for all other available states, and is the
first state that the user interacts with.

no state change

=

curr_state

curr_state = 1
curr_state =0

=3

curr_state = 2
curr_state = 0

no state change
curr_state = 0 no state change

state_mp3_player. 2

no stale change

state_gallery: 1 stale_game: 3

Figure 3 — High-level finite state machine

IVV. DESIGN

A. RTX Kernel Configuration

The RTX kernel is configured to have a default thread
stack size of 400 bytes, instead of the default 200 bytes.
This allows for the stack space needed for GLCD
operation. Also, RR operation is disabled, as the threads
are scheduled by virtual timers instead.

B. Finite State Machine Implementation

The FSM outlined in the Methodology section is
implemented through the definition of a StateDef
structure and the utilization of function pointer typedefs.

Figure 10 (Appendix I) outlines the various components
of the FSM implementation used in this project. The
entry and exit handlers do not take any arguments. The
input handler takes an argument of what joystick button
has been pressed. This argument is passed from the
kbd_handler thread, as can be seen in the flowchart in
Figure 12 (Appendix I). On the other hand, the update
handler takes a “ticks” argument. This parameter is the
number of ticks that have passed since the start of the
program, as kept track of by the RTX kernel. The reason
this parameter is passed to update handlers is to facilitate
any types of updates that require consistent timing. This
requirement comes up for the game logic, as well as for
animated sprites shown in the image gallery.

C. Sprites, AnimatedSprites, and GLCD
Modifications

To make bitmap rendering easier, especially when a
single bitmap array might have multiple images at
different indices, a structure called Sprite was created.
The Sprite struct, as defined in the Utils.h header
(Appendix 1), defines sprite descriptor parameters that
describe how to access the desired image out of the
bitmap array. A Sprite is declared by setting its x and y
location on the screen, setting the width and height of the
bitmap to appropriate values, and then setting the ptr
field to point to the bitmap array. The index field should
be set to zero, unless there are other bitmaps in the
bitmap array pointed to by ptr, and one of those other
bitmaps is the one that should be displayed. The Utils.h
header also defines a draw_sprite function that takes a
pointer to a sprite as an argument. This function is a
wrapper function for the GLCD_Bitmap function that
makes it much easier to draw sprites. Instead of manually
using all of the sprite parameters, the developer passes a
pointer to the sprite, and the draw_sprite function handles
all of the parameter extraction for the proper rendering of
the sprite. There are two other utility functions as well:
draw_sprite_alpha and clean_sprite_area. These utility
functions utilize the GLCD modifications and additions.

1) GLCD Addition: Alpha Support

One of the GLCD additions is support for transparency
in bitmaps. There are many instances where a bitmap
image is not actually rectangular, but some other
complex shape. A perfect example is the rendering of the
icons on the main menu screen. The main menu has an
image for a background, and has icons drawn on top of
this background. Without transparency support, the icons
must have a solid color background behind them, or must
be of a rectangular shape. This is why the GLCD library

was modified to add a function called
GLCD_BitmapAlpha. This function is nearly identical*
to the GLCD_Bitmap function, except for an additional
argument called alpha_color. This new function will
draw bitmap data to the screen in the same way as the old
function, but will skip any pixels where the pixel color
equals alpha_color. The effect of this logic is that any
pixels that are meant to be transparent will not be drawn,
and therefore will not overwrite any background pixels.
This leads to a transparency effect.

However, the LCD controller does not use absolute
coordinates when drawing pixels to the screen. To draw
to the screen, an “active” area must first be configured
somewhere on the screen. Then, sequential data writes
are performed to the screen. The LCD controller
automatically maps this sequential data into the active
window, by incrementing the current pixel row number,
and then wrapping around to the next row once the end
of the current row has been reached. The effect of this
feature, which does make writing to the screen easier, is
that there is no simple way to access or skip over
individual pixels wusing its absolute coordinates.
Therefore, the only way to “skip” a pixel due to it having
a transparent color is by performing a dummy read.
Performing a read operation will read the pixel value at
the current pixel address, and then increment the address
as though data had been written. This effectively skips
the pixel.

The transparency color can be any color, but should
preferably be a color that is the least likely to be used.
For this project, magenta was used as the transparency.
This is a common transparency color as it is rarely used.
An example of a bitmap with a transparent background
can be found in Figure 4.

Figure 4 — Example of a bitmap with a
transparency color

1 Excluding the modifications mentioned in Subsection 3)

2) GLCD Addition: Area Fills

There are multiple functions within the project that
require a fill of an area of the scree with a solid color. A
common usage of area fills is for sprites that are moving
throughout the screen, such as the bird and pipes in
Flappy Bird. Using the existing GLCD_Clear function
greatly diminishes performance since the whole screen
has to be filled, and is a highly inefficient method of
achieving the task. Instead, only the area where a sprite
used to be needs to be filled to the background color. This
could be accomplished with having a solid fill bitmap
that is the same size as the sprite to be cleaned off the
screen. However, this bitmap now needs to be stored in
the flash memory of the microcontroller-a very
expensive resource, especially in a large project such as
this one. Also, there must exist multiple such bitmaps for
every bitmap size used in the program, unless the solid
fill bitmap is somehow reused for all of the bitmaps. In
either case, the complexity of the project increases by
orders of magnitude, over something that is a quite
simple issue to resolve.

Instead, a function called GLCD_Fill was
implemented. This function is similar to the
GLCD_Bitmap, except that instead of taking a pointer to
a bitmap array, it takes a color parameter. The
functionality of this new function is also very
straightforward: it loops through an area defined by the
X, Y, wand h parameters, and sets each pixel to the passed
color. This makes it very easy to fill specific areas of the
screen with specific colors.

3) GLCD Modification: Proper Orientation and
Out of Bounds Handling

For the interim project update, any rendered bitmaps
had to be flipped beforehand in an image editing software
since the GLCD_Bitmap function implementation
seemed to draw images with a vertical flip. For the final
project demo, this quirk was investigated and was
determined to be a result of the way that the bitmap data
was indexed in the GLCD_Bitmap function. Instead of
indexing the bitmap data from top to bottom, the function
indexed it from bottom to top. A simple modification to
the outer for loop flipped the images back to the normal
orientation.

Another flaw of the GLCD_Bitmap function was that
it did not handle the cases where the bitmap image was
either partially or completely out of the bounds of the
screen. This caused bitmaps to either wrap around from

one side of the screen to the other, or to not render at all
if they were partially out of bounds. The GLCD_Bitmap
function was modified to be able to resolve such cases.
Not only did this fix the aforementioned issues, but now
the program did not have to waste time and resources
attempting to draw something to the screen that would
not be visible anyway.

With the newly modified function, when a bitmap is
passed to the function and is completely out of bounds,
the function simply returns without performing any
additional work. If the bitmap is partially within bounds,
the function clips the image rendering to only cover the
pixels that are within the bounds.

As an example of such a case, Figure 5 shows a
dummy bitmap that is partially out of the rightmost
bounds of the screen. As can be seen, half of the bitmap
exists past the right edge of the screen. To handle such a
case, the GLCD_Bitmap function draws to an active
window with a width of {WIDTH — x} instead of
img_width.

WIDTH=320
img_width
x.¥) >
@
img_height
WIDTH - x (x + img_width) - WIDTH

Figure 5 — Diagram of a bitmap that is partially
out of bounds of the screen

In addition to the Sprite struct, Utils.h defines an
AnimatedSprite struct. This struct acts as a wrapper to a
Sprite struct, and also introduces fields that define the
animation parameters for an animated sprite. These
parameters can be found on lines 20-26 of Utils.h. These
parameters define the number of images in the animation
(to know when to wrap an incremented sprite index back
to zero), the period of the sprite updates (in
milliseconds), and the tick timestamp of the last image
transition (to know how long to wait until the next
transition).

D. MenuGUI

The core functionality of the menu rendering and
selection changing is encapsulated in a MenuGUI
module. This reduces code clutter in main.c and allows

for easier debugging. The MenuGUI module defines the
entry, update and input handlers for the main menu state.
The entry handler is called MenuGUI_Init. This handler
function initializes the sprites used for rendering the
background icons of the menu. The MenuGUI_Update
function acts as the update handler of the menu state. Any
state update handler is called with a 50ms period.
However, the menu only needs updating if the menu
selection changed. To minimize screen flicker and save
on program resources, the MenuGUI module defines two
substates—one where updates are required, and one where
they are not. This is done through the use of a
needs_update variable. If the variable is set to true, that
means that the state of the menu changed and must be
visually updated. If the variable is false, that means that
there were no updates since the last update handler call,
and therefore nothing should be done by the update
handler. The update handler checks the status of the
needs_update variable at the beginning of the function,
and if it is false, the function returns without doing any
work. If the variable is true, however, the update handler
redraws the menu scene. It does this by first drawing the
menu background. Then, it loops through all of the icons
that need drawing and draws them. First, it checks if the
current icon in the loop is the selected icon. If it’s not, it
simply draws the icon and moves on to the next icon. If
the current icon is the selected one, it first draws a blue
background behind the sprite to show that it is the
selected icon.

The MenuGUI input handler updates the current
selection in response to joystick presses. Although the
input handler has the function signature of a valid
InputHandler function, this function is not used as the
main menu state input handler callback. This is because
it being within the MenuGUI module, the
MenuGUI_Input function cannot properly respond to the
select action of the joystick. This is because the core
FSM parameters exist in the scope of main.c and are not
exposed to the MenuGUI module. Therefore, no function
within the MenuGUI module could update the FSM state
variables in response to an item selection event. While it
would be possible to extern the FSM state variables and
have access to them from the MEnuGUI module, this
defeats the whole concept of encapsulation of the menu’s
GUI functionality. Overall, it makes for cleaner code to
handle application-specific FSM transitions in the scope
of main.c. The way that the input handling works then, is
that there is a menu input handler in main.c that handles
the select press of the joystick, and forwards all other
joystick actions to the MenuGUI module.

E. Image Gallery

The image gallery supports a variable number of
images, and can also handle a mix of both animated and
static images. To achieve this invariance to image type,
a new structure called ImageContainer was defined to
provide image type metadata. This struct had to be
created since static images are implemented using Sprite,
and animated images using AnimatedSprite. Since this
project is programmed in C and not C++, there is no true
object-oriented functionality built into the language.
Therefore, there cannot be a base object type that can be
either a Sprite or AnimatedSprite, without performing
void pointer voodoo magic (which is slightly outside of
the scope of the project). To get around this inherent
limitation of the programming language, the new
ImageContainer struct must be used. This struct is
nothing more than another wrapper around an
AnimatedSprite struct, that leverages the fact that an
AnimatedSprite contains a Sprite within it. This new
struct simply adds an is_animated field that defines the
type of image that this container stores. If is_animated is
true, that means that the AnimatedSprite object can be
used to its full capabilities as an AnimatedSprite.
However, if is_animated is false, that means that only the
Sprite object within the AnimatedSprite is fully defined,
and that the animation-related parameters of
AnimatedSprite cannot be trusted to be accurately
initialized. These two simple assumptions, defined
through a single variable, allow the ImageContainer
struct to be versatile and cover both image types.

The gallery update handler logic is covered in a
flowchart that can be found in Figure 13 (Appendix 1).
In summary, the update handler performs three main
functions: wipes the previous sprite area on image
transition, updates the frames of an animated image with
the period defined by the AnimatedSprite object, and
draws either a frame of the animated image, or draws a
static image if there is no animation.

F. MP3 Player

The MP3 player state is the simplest state of the project
and really only handles the muting and unmuting of the
DAC audio output. A Mute variable is already available
in the USBAudio code, and is externed in main.c. In the
entry handler, Mute is set to FALSE, and in the exit
handler, Mute is set to TRUE. The update handler is
defined for this state, but is empty as there is no need for
it. The entry handler also clears the GLCD and prints a
simple header that labels the new page as an MP3 Player.

G. Flappy Bird

The Flappy Bird game is completely packaged in a
separate module (i.e. separate header and source file) to,
once again, make the code easier to develop and
understand. The game is exposed to the main project
through three functions: FB_Init, FB_Update, and
FB_Input_Jump. The FB_Init function is called from the
game state entry handler (which is a function in main.c).
This initialization function sets up the game to a clean
reset state, and puts the game in a state where it waits for
user input to start playing. To achieve the latter part, the

FB module defines two substates:
GAME_STATE_WAITING (GSW) and
GAME_STATE_PLAYING (GSP). In the GSW

substate, the update handler returns without doing any
work, and the game is in a paused state until the up key
is pressed on the joystick.

1) Update Types

When in the GSP substate, the game is running and is
actively updating using the update handler. In the update
handler, there are three types of updates that occur at
their own configurable rates: map update, bird update,
and bird flap animation update. All three update types
have their own tick timing variables used for calculating
when their periods have expired and an update is
required. The detailed and commented implementation
can be found in FlappyBird.c (Appendix II). Due to the
fact that the update handler has access to the system tick
value means that all timing can remain consistent, even
under thread timing changes, or even system clock
changes. This is a very crucial principle of the overall
system architecture and allows for the successful
decoupling of all sub-modules from the overall RTX
implementation.

2) Map Scrolling Update: Game Environment and
Random Map Generation
The map update occurs with a period of 60ms. During
each map update, the position of all active walls is moved
5 pixels (px) to the left. Moving the walls to the left
provides the illusion that the player is flying left. Each
update cycle, all of the walls are checked to see if they
have finished their lifecycle. A wall finishes its cycle
once it’s past the leftmost bound of the screen and is
completely out of view. When this happens, the wall is
regenerated at the rightmost side of the screen, just out of
view. This provides the illusion that there is an endless
stream of walls, while only really keeping track of two
active walls at a time. The map update event also checks

to see if the bird has successfully crossed any of the
active walls. All walls have a parameter called passed,
which is false if it is ahead of the bird, and true if the bird
already passed it and the wall is behind the player sprite.
The map update checks to see if there are any walls that
are fully behind the player sprite. If they are and have not
been marked as passed yet, that means that they have
been passed recently. When this occurs, the player score
is incremented and the wall is marked as passed, so as to
prevent it from incrementing the player score multiple
times. If a wall has been passed and has been marked as
such, it is ignored for score updates.

When a wall goes out of bounds and becomes inactive,
it requires regeneration. When it is regenerated, the
position of the gap between the top and bottom pipe is
randomized. The gap has a minimum and maximum
height to prevent it from being all the way near the
ceiling or the floor. The gap also has a variable size that
changes after a set number of passed walls to increase
game complexity. The gap size variable starts out at a
comfortable maximum to help new players get into the
game. After every 5 successfully passed walls, the gap
size decreases by 5px. This keeps happening until the gap
size reaches a predefined minimum value. At this
minimum, it is still possible to pass through the gap,
although it is much more difficult.

The random location of the gap is generated with the
help of the rand() function found in <stdlib.h>. The
random generation code can be found in the
FlappyBird.c source, on lines 123-133.

3) Bird Update: Kinematics and Collision
Detection
The bird update occurs with a period of 40ms. At each

40ms time step, the velocity of the bird is updated based
on the delta time and the gravity value. The vertical y
position of the bird is then updated based on the new bird
velocity and, once again, the delta time step. This type of
position modeling is pure physics kinematics and leads
to a somewhat realistic feel of gravity. There are slight
errors that could be felt during gameplay, but this is due
to the fact that there are very few vertical pixels (240px),
which leads to quantization errors. Under low velocity
conditions. If there were more pixels, then the screen
would have a greater resolution that would be able to
show these low velocities.

2 The coordinate system of the screen starts at the top-left corner, with
increasing x going right, and increasing y going down.

The bird update event also checks to see if, after the
bird position was updated, the bird is now colliding with
any of the walls or the floor. The ceiling was left open,
and the user was allowed to go out of bounds that way.
Doing so did not break the game, since the user would
collide with the very top of the wall; it stretches infinitely
up beyond the screen. However, hitting the floor would
lead to the game being over. Checking for this collision
was very simple. For the purposes of collision detection,
the bird sprite can be thought of as a bounding box,
defined by the x and y coordinates, as well as the sprite
width and height. Figure 6 visually demonstrates this
bounding box (BB). Note that in the figure, w means
width and h means height. The bird colliding with the
ground means that the bottom edge of the BB has a
greater? y value than the floor. When this condition is
true, a collision with the ground is detected and the game
iS reset.

(x,y) (x+w, y)

(x, y+h) (x+w, y+h)
Figure 6 — Bird sprite bounding box

Collision detection with the walls is slightly more
involved than the trivial case of floor collision, yet it is
still straightforward. During the bird update, all active
walls are looped over and are tested for a collision
between the bird and the respective wall. At first, the
collision detection code tests if the bird sprite overlaps
the general vertical strip of the wall, without even
considering the gap. The condition rules out cases where
the bird sprite is completely on the left or right of the
given wall. This happens when either both x and x+w are
less than the wall x, or when both x and x+w are greater
than the wall x + wall width. If this test fails, then there
is no risk of collision, so the more specific condition can
be skipped. If, however, the bird is within the bounds of
the wall, then it must be checked if the bird is within the

passable gap, or actually colliding with either the top or
bottom pipe. This next step is done by checking for the
vertical position of the bird sprite. Considering the
problem from a higher-level, there no collision if the top
and bottom edges of the bird BB are within the passable
gap BB. Therefore, it is sufficient to check if either the
top edge of the bird BB is above the top edge of the gap,
or if the bottom edge of the bird BB is below the gap
bottom edge. If this condition is true, then a collision is
detected and the game is reset.

4) Animations and Efficient Sprite Drawing

The sprite used for the bird is actually not a static
image, but an animated sprite consisting of three images.
The bird flapping animation is updated every 200ms,
leading to a 5 frame per second animation.

The Flappy Bird game has many moving sprites that
are updates several times per second. When a sprite
changes locations on the screen, its old pixels must be
cleaned so as to not leave a continuous trail. The naive
approach is to simply clear the whole screen and redraw
the scene. However, clearing the whole GLCD incurs
severe time penalties which are very visible to the user.
Doing a screen clear several times per second would
cause the whole system to lag significantly.

Instead the screen has to be selectively filled where
necessary. For a sprite such as the bird, which has a
variable velocity at each time step, it is easier to fill in
the old sprite area with the background color to wipe the
old sprite, and then to redraw the sprite in the new
location. This method leads to some slight visual artifacts
when the bird is moving quickly, but these minimal
glitches are tolerable. This method works for the bird
because the sprite bitmap is relatively small. However,
this method cannot be used for the moving pipes. The
pipes are large vertical sprites that span almost the
complete height of the page. When the simpler method
of clearing the whole sprite area and then redrawing in
the new position is used, there is a noticeable lag in the
game that degrades performance. In fact, the whole game
noticeably slows down when this method is used.

There is a very easy workaround though for the pipe
sprite updating. Luckily, the pipes move with a steady
velocity of 5 pixels per time step. That means that the
delta distance between the old and new sprite locations is
a constant. Therefore, simple helper functions were made
to only clear the delta area between the old and new pipe
sprite locations. This significantly improved the
performance of the game.

It should be noted that the concept of cleaning or
clearing the old sprite is nothing more than filling the

region of the sprite (or the delta region in the case of the
pipes) with the background color. This effectively erases
any sprites in the defined region.

5) Input Handling

The only input to the game is the pressing up with the
joystick. When the game is in the SGW substate, pressing
up will start the game. When the game is in the SGP
susbstate, pressing up causes the bird to jump up with a
set velocity. Like in other system states, pressing left on
the joystick takes the user back to the main menu state.
Since high level state switching is handled within the
context of main.c, the FB module cannot respond to such
inputs. Therefore, the actual input handler callback
function exist in main.c. If the game input handler
receives a left joystick press, it switches the FSM state to
the main menu. If the input is instead a joystick up event,
the input handler calls the FB_Input_Jump function to
notify the FB module that the user triggered a jump/start
game action. All other inputs are ignored.

V. EXPERIMENTAL RESULTS

The various requirements of the project were met with
high code efficiency, due to a very expandable and
debuggable high-level architecture. Defining all required
sections as discrete states of an FSM, with each state
having substate as needed allowed for the code base to
be easily scalable. This made the development process
simple, with endless possibilities limited only by
processor speed and working memory constraints. Also,
as the core scheduling of the project was defined using
the RTX kernel, the timing of each state function could
be accurately controlled. Furthermore, the design choice
of relying on a tick parameter passed to all update
handlers, instead of hard-coding and assuming that each
time step is strictly dictated by the virtual timer
configuration of each thread made fine-tuning of the
project very easy. Initially, the update and input handler
thread timings were not ideal and caused either the input
to be unresponsive, or the game to lag significantly. The
virtual timer parameters had to be adjusted until the
system worked nicely. If the update handlers did not have
access to the tick value, then all of the update handlers
that had any sort of time-dependent calculations would
have to be modified to reflect the new timing. Instead,
the update handlers remained the same, despite the thread
timings changing.

Initially, there was an additional thread -called
led_update that animate the LEDs to be a visual heartbeat
indicator. This provided valuable insight into how the

program was managing in each function, as the LED
animation would noticeably lag if the thread timing was
reaching full utilization. There were also issues initially
with the program not being responsive in certain states.
The LED strip helped debug that issue as being a thread
priority problem. This thread was later removed as it was
no longer needed and would only act as overhead for the
increasingly complex game and image gallery states. The
modular nature of the overall system made it very easy
to remove this thread.

A. Menu State

The menu state is the initial state of the system, and is
the first one that the user sees. This state is responsible
for the navigation to all other states. Here, the user can
find the familiar comfort of the Windows XP desktop
background image, with Windows XP-style icons
leading to all of the other states. The icons are displayed
in a single row, with a total of three icons (one per state,
not including the menu state). Pressing either left or right
with the joystick changes the current icon selection.
Pressing select on the joystick transitions the FSM state
to the highlighted icon’s state. Figure 7 shows the main
menu screen, as it would be seen by the user.

COE718 Medla Project
Tal Zaitsev, F2018

Formula Rasing

Figure 7 — Main menu screen, with the second
item highlighted

B. Image Gallery State

The image gallery is a state where the user can view
multiple images by cycling through them with the
joystick. The gallery supports both static and animated
images. For the demo, there are two static and one
animated images: Windows XP background, Ryerson
Formula Racing logo, and an animated stickman dancing
back and forth. The user navigates through each picture
by pressing the up or down joystick buttons, and pressing
left to leave the gallery and return to the main menu. The
gallery is also styled as a Windows XP explorer window,
to maintain the overall retro theme of the project. An
example of an image being displayed in the gallery can
be found in Figure 8.

RYERSON FORMULA
RACING

Figure 8 — The image gallery, with an example
image being shown

C. MP3 Player State

The MP3 player state is the simplest state. The only
function of this state is to mute and unmute the audio
output of the board. This is performed by state entry and
exit handlers; the entry handler unmutes the sound, and
the exit handler mutes it. Another function of the entry
handler is to clear the display screen and to print a header,
identifying the state as the MP3 player state.

D. Game state

The game state is the most interactive state, and
provides gameplay to the user. The game implemented
in this project is Flappy Bird—a retro-style side scroller
created by Dong Nguyen, commonly known for its
seemingly overnight rise to fame in 2014 [4]. The game
consists of a pixelated bird, controlled by the user, trying
to avoid obstacles in the form of pipes spanning from the
top and bottom of the screen. An example of what the
game looks like can be found in Figure 9. The bird is
constantly falling due to gravity, so the user must provide
it with an upward boost at the correct time to keep the
bird from hitting either the pipes or the ground. The
upward and downward pipes have a gap between them
that the user must aim for. In this implementation of the
game, the gap between the pipes narrows after every fifth
successful crossing. The gap keeps decreasing until it
reaches the minimum allowed gap. This is done to ensure
that even on the hardest level, the game is still playable.

When the user first enters the game state, they are
prompted to press up on the joystick to begin the game.
The user then presses up to give the bird a boost. Once
the user collides with either pipe or the ground, the game
is over. The game is then stopped, and the user is once
again prompted to press up on the joystick, which restarts
the gameplay. Prompting the user for an explicit action
in order to start the gameplay allows the user to get ready
and not be caught off-guard when the game starts. This
prevents the user from getting angry with the game. As

much as possible must be done to keep the user happy,
as Flappy Bird is fundamentally a very annoying game
to play.

Figure 9 — The Flappy Bird game

E. USB Audio Playback

Another feature that must be mentioned is the USB
audio playback. The implementation of the audio
playback is almost entirely identical to the USBAudio
example code. The main changes done to the example
code were minor fixes to some LPC17xx system function
references, as the example code is possibly intended for
an older version of LPC17xx standard library. The
main() function of the USBAudio project was also
changed to USBAudio_Init(), so that it could be called
from the actual main() function of the project to initialize
USB audio functionality.

Strangely enough, there was a critical issue with the
example code that initially prevented it from running in
conjunction with the RTX kernel. When the USBAudio
code was first integrated into the Work In Progress (WIP)
project that implemented thread scheduling using RTX,
none of the threads would work. Multiple debugging
steps were taken to try and isolate the problem. At first,
breakpoints were set at various point in the main()
function, and in each thread. It was observed that none of
the breakpoints were hit in the RTX threads. The
problem was isolated to occur only after USBAudio
initialization. After further attempts to isolate the root
cause of the issue through commenting out different
initialization code sections, the problem was further
isolated to only happen after a call to USB_Init().

Through rigorous investigation of the example code,
and possible solutions online on the Keil forums, the
problem was identified to be caused by a bug in the USB
interrupt handler. The USB_IRQHandler interrupt
handler handles all USB interrupts. This means that when

10

the the function is called, it must conditionally process
all possible interrupt sources by checking which specific
interrupt flag is set. Once it processes a specific interrupt,
it clears its respective interrupt flag to signify that it
handled the interrupt. This was done correctly for all
interrupt sources, except the FRAME_INT interrupt. The
interrupt handler was never programmed to clear the
FRAME_INT flag once it finished processing the
interrupt. Due to this oversight in the code, the interrupt
was continuously reprocessed. Since an interrupt has a
higher priority than any RTX thread, just by the nature of
being an interrupt, none of the threads were called as they
were always blocked. Clearing the flag in the interrupt
handler fixed this issue.

V1. CONCLUSIONS

Despite the many hardship and tribulations faced in the
journey on completing this project, it was implemented
successfully. In fact, the end result turned out better than
expected. Not only was there a cohesive theme to the
project that tied all of the subsections together, but the
implementation of the code was clean and reusable. The
project, in its current state, could be easily extended to
include additional features with minimal overhead.

One feature that was considered to be added was a
screensaver, to fit with the retro Windows XP theme. A
logo bouncing around a black screen, such as the one
seen in a skit on the Office (US) TV show [6], would
provide much nostalgia and possibly comedic value.

Overall, such additions are simple to develop and
integrate into an existing project if the project is built on
a properly designed codebase. The design principles
equipped for this project allow for such expansion, and
present a frictionless framework within which the project
seamlessly debugged, maintained, and is left with a
multitude of opportunities for future expansion.

REFERENCES

[1] J. Ganssle, "The shape of the MCU
market”, Embedded, 2018. [Online]. Available:
https://www.embedded.com/electronics-
blogs/break-points/4441588/The-shape-of-the-
MCU-market.

[2] G. Khan, Lab 2: Exploring Cortex-M3 Features for
Performance Efficiency. Ryerson University, 2018.
Available:
http://www.ee.ryerson.ca/~courses/coe718/labs/Lab
2.pdf

[3] Martin, T., "The Designer's Guide to the Cortex-M
Processor Family", Elsevier Ltd, 2013.

11

[4] K. Bell, "The Man Behind 'Helicopter Game,' the [5] T. Chinzei, "LPC1768 USB Device Frame

Original 'Flappy Bird™, Mashable, 2018. [Online]. Interrupt”, Onarm.com, 2014. [Online]. Available:
Available: https://mashable.com/2014/02/09/flappy- http://www.onarm.com/forum/59096/.
bird-helicopter-game/. [6] The DVD Logo - The Office US", YouTube, 2018.

[Online]. Available:
https://www.youtube.com/watch?v=QOtuX0jL85Y.

12

APPENDIX | — SUPPLEMENTARY FIGURES

main.c

+ states: StateDef[0.. STATES_TOTAL-1]

1+ curr_state: State

+ prev_state: State

1
-

+ update_handler{uint32_t): void

==Fnumerafion==
States

+ input_handler(uint32_t): void

StateDef

+ enter: TransitionHandler

+ STATE_MENU =0

+ STATE_GALLERY =1

+ STATE_MP3_PLAYER =2
+ STATE_GAME = 3

+ STATES_TOTAL = 4

+ exit: TransitionHandler
+ update: UpdateHandler

+ input: InputHandier

Figure 10 — Finite State Machine implementation details

h J

display_update
start

h/‘aait for event flag

/ from virtual timer

curr_state
different from
rev_state?,

noe

does
exit handler
exist for

rev_state?

no

yes

call prev_state
exit handler

call curr_state
entry handler

get current
tick count

/ call curr_state

update handler,
/ passing tick count

Figure 11 — display_update thread logic flowchart

13

kibd_handler
start

Y

wait for event flag /

from uirtualtimer/"‘

some key yes

pressed?

yes

is kbd lock set?

clear kbd lock variable

call curr_state
input handler,
pass joystick value

h

set kbd lock variable

Figure 12 — kbd_handler thread logic flowchart

14

gallery_update
start

get curr tick value
from passed
parameter

‘turrent img nof yes
prev img?

fill area of sprite
no with background color

set
prev img = curr img

curr img yes
animated?
s delta time
no since lastimg yes
update greater than img
update
period?
set
last img update tick
no value to
curr tick value
Y
increment sprite index
is the new
sprite index valug
greater than
the max index value?
¥
increment sprite index
Y

draw curr img

Figure 13 — Image gallery update handler

15

OCOO~NOOUITRWNE

APPENDIX Il — SOURCE CODE

main.c

16

/***

COE71

Tal Zaitsev
***/

#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ
#includ

#define

8 main.c

XXXXXXXXX

F2018

// RTX header file

e <stdio.h>

e <ctype.h>

e <string.h>
e <stdbool.h>
e "cmsis_ os.h"
e "RTL.H"

e "LPCl7xx.H"
e "GLCD.h"

e "LED.h"

e "KBD.h"

e "Utils.h"

// LPCl7xx definitions

e "USBAudio/type.h"
e "FlappyBird.h"
e "MenuGUI.h"

_FI

#define _ USE LCD

VD 3 0 R

1
0

/* Font index 16x24

/* Uncomment to use the LCD */

Bitmap/image gallery viewer definitions

S i i

#define GALLERY NUM IMGS 3

extern
extern
extern
extern
extern

typedef

unsigned
unsigned
unsigned
unsigned
unsigned

struct {

char
char
char
char
char

BORDER TOP pixel datall;
GALLERY NAV pixel datall;
IMG 1 pixel datall;
IMG 2 pixel datall;
IMG 3 pixel datall;

AnimatedSprite image;
int is_animated;
} ImageContainer;

VAR 0

Global variables

SRR R

char bu

£[20];

// for kd handling
int kbd_val = 0, kbd_lck = 0;

// for the LED thread

int dir

= 1;

unsigned long leds =

// for

gallery

// 1f 0,

2;

ImageContainer images[GALLERY NUM IMGS];
0, prev_image = -1;

int cur

[FEEE AR R R R R R R R R

r image =

USBAudio variables and functions

FHEHEFFF A AR R R R R R R R/

extern int USBAudio Init(void);
extern uint8 t Mute;

*/

then will only use the Sprite struct in the AnimatedSprite struct

120
121
122
123
124
125
126
127
128
129

VA & 3 A & R R R E R R R

State machine definitions

HHEFFF A AR R R R R R R R R R

#define STATE MENU 0
#define STATE GALLERY 1
#define STATE MP3 PLAYER 2
#define STATE GAME 3
#define STATES TOTAL 4

typedef void (*TransitionHandler) (void) ;
typedef void (*UpdateHandler) (uint32 t ticks);
typedef void (*Input) (uint32 t key);

typedef struct {
TransitionHandler enter, exit;
UpdateHandler update;
Input input;

} StateDef;

StateDef states[STATES TOTAL];

// common variables
int curr state STATE MENU;
int prev_state -1;

’

void gallery enter() {
GLCD Clear(White);
GLCD SetBackColor (Blue) ;
GLCD SetTextColor(Yellow) ;

//GLCD_DisplayString(0, 0, _ FI, " 2 LEGS, 2 ARMS ") ;
//GLCD DisplayString(l, 0, _ FI, " 1 DREAM ")
GLCD Bitmap(0, O, 320, 48, BORDER TOP pixel data);
GLCD Bitmap(0, 80, 81, 53, GALLERY NAV pixel data);
}
void gallery handler (uint32 t ticks) {
if (prev_image != curr image) {
clean sprite area(&images[prev image].image.sprite, White);
prev_image = curr_ image;
}
if (images[curr image].is animated) {
if(ticks - images[curr image].image.last update
osKernelSysTickMicroSec (10000*images[curr image].image.update msec)) {
images[curr image].image.last update = ticks;

if (++images[curr image].image.sprite.index >
images[curr image].image.sprite.index = 0;
}
}
draw_sprite(&images[curr image].image.sprite);

}

void mp3 player enter() {
GLCD Clear(White);
GLCD_ SetBackColor (Blue) ;
GLCD_SetTextColor(Yellow);
GLCD DisplayString(0, 0, FI, "
Mute = FALSE;

}

MP3 Player

void mp3 player handler(uint32 t ticks) {
// TODO: add mp3 handling, if necessary
}

void mp3 player exit() {
Mute = TRUE;
}

images[curr image].image.num imgs

")

17

1)

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

void game enter() {
GLCD Clear(White);
GLCD SetBackColor (Blue) ;
GLCD_SetTextColor(Yellow);
GLCD DisplayString(4, 0, FI, " Press ~ to start ");
FB Init();
}

void game handler(uint32 t ticks) {
// Update the game by passing the current tick value
FB Update(ticks);

}

// main menu input handler
void menu_ input (uint32 t key) {
if (key == KBD SELECT) {
// change state to selected item
curr state = menu select + 1;
} else {
// let the GUI library handle item switches, etc.
MenuGUI Input (key) ;
}
}

// gallery page input handler
// up/down presses change image, left moves back to main menu
void gallery input(uint32 t key) {
switch (key) {
case KBD LEFT:
curr state = STATE MENU;
break;
case KBD UP:
if (--curr image < 0) curr image = GALLERY NUM IMGS ;
break;
case KBD_DOWN:
if (++curr_image > GALLERY NUM IMGS - 1) curr image 0;
break;

}
}

// simple input handler, used for pages that don't use input,
// but need to handle left joystick press to go back to main menu
void simple input(uint32 t key) {
switch (key) {
case KBD LEFT:
curr_ state = STATE MENU;
break;
}
}

// the game input handler
// handles left press to go back to menu,
// and performs jump action on up arrow press
void game input(uint32 t key) {
switch (key) {
case KBD LEFT:
curr state = STATE MENU;
break;
case KBD UP:
FB Input Jump();
break;
}
}

Vakiizitiisszdssdddzstdsdtdsdstdtatitadtitdadditdtddddiddidddsdd
Thread declarations and priority configurations

18

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

FhHEFHH AR F A AR AR A R R R/
void kbd handler (void const *argument);
void display update (void const *argument);

// thread definitions
osThreadDef (kbd handler, osPriorityAboveNormal, 1, 0);
osThreadDef (display update, osPriorityNormal, 1, 0);

osThreadId kbd handler ID;
osThreadId display update ID;
osThreadId t main ID;

JEHREE AR
Virtual Timer declaration and call back method
FHEFFH S F AR R/
void timer callback(void const *param) {
switch((uint32 t) param) {
case 0: // kbd handler
osSignalSet (kbd handler ID, 0x01);
break;
case 1: // display update
osSignalSet (display update ID, 0x02);
break;
}
}

osTimerDef (kbd timer handle, timer callback);
osTimerDef (img timer handle, timer callback);

JEHR AR R R
Thread definitions
iddgszatisadtdssdddgatddadadadaddnaRERAEEEEEEEAEEEEEEEEEEEE A
void kbd handler(void const *argument) {
for(;;) {
osSignalWait (0=x01, osWaitForever);
kbd val = KBD get();
// If some KBD key is pressed
if (kbd val != KBD MASK) {
if ('kbd 1lck) {
kbd 1lck = TRUE;
// If a button is pressed, the corresponding bit is '0'
// Therefore, if none are pressed, kbd val == KBD MASK,
// subtracts that button's bit mask from KBD MASK. So,
states[curr state].input (KBD MASK - kbd val);
}
} else {
kbd 1ck = FALSE;
}
}
}

void display update(void const *argument) {

for(;;) {
osSignalWait (0x02, osWaitForever);
if (curr state != prev state) ({
if (states[prev_state].exit != NULL) {

states[prev_state].exit();

}
states[curr state].enter();
prev_state = curr_ state;

}

states[curr state].update(osKernelSysTick());

otherwise it's '1l'
and pressing a button
send KBD MASK - kbd val

19

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

JREEEE A R A R

Main function

S i i

int main (void) {

//Virtual timer create and start

osTimerId kbd timer =
osTimerId img timer =

SystemInit () ;
LED_Init();
KBD Init();
Mute = TRUE;
USBAudio Init();

#ifdef USE LCD
GLCD Init();
GLCD Clear(White);
fendif

// define all states

osTimerCreate (osTimer (kbd timer handle), osTimerPeriodic,
osTimerCreate (osTimer (img timer handle), osTimerPeriodic,

// initialize the Coretx-M3 processor

/* Initialize graphical LCD
/* Clear graphical LCD display

states[STATE MENU].enter = MenuGUI Init;
states[STATE MENU].update = MenuGUI Update;
states[STATE MENU].exit = NULL;
states[STATE MENU].input = menu input;

states[STATE GALLERY].
states[STATE GALLERY].
states[STATE GALLERY].
states[STATE GALLERY].

enter = gallery enter;
update = gallery handler;
exit = NULL;

input = gallery input;

states[STATE MP3 PLAYER].enter = mp3 player enter;
states[STATE MP3 PLAYER] .update = mp3 player handler;
states[STATE MP3 PLAYER].exit = mp3 player exit;
states[STATE MP3 PLAYER].input = simple input;

states[STATE GAME].enter = game enter;
states[STATE GAME].update = game handler;
states[STATE GAME].exit = NULL;
states[STATE GAME].input = game input;

.image.sprite.ptr = IMG 1 pixel data;

.image.sprite.ptr = IMG 2 pixel data;

.image.sprite.ptr = IMG 3 pixel data;

images[0].image.sprite.x = ;
images[0].image.sprite.y = ;
images[0].image.sprite.width = ;
images[0].image.sprite.height = ;
images[0]
images[0] .image.sprite.index = 0;
images[0] .is animated = FALSE;
images[1l].image.sprite.x = ;
images[l].image.sprite.y = ;
images[l].image.sprite.width = ;
images[l].image.sprite.height = ;
images|[1]
images[l].image.sprite.index = 0;
images[1].is animated = FALSE;
images[2].image.sprite.x = ;
images[2].image.sprite.y = ;
images[2].image.sprite.width = ;
images[2].image.sprite.height = ;
images|[2]
images[2].image.sprite.index = 0;
images[”?].image.num imgs = 2;

1

images|[

.image.last update = 0;

20

(void *)0);
(void *)1);

(1f enabled */

*/

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

OCOO~NOOUITRWNE

images[?].image.update msec = 200; // 5 fps
images[?].is animated = TRUE;

21

// set main thread priority to high so that none of the threads it creates will pre-empt it

during init
t main ID = osThreadGetId();
osThreadSetPriority(t main ID, osPriorityHigh);

// start the timers
osTimerStart (kbd timer, 200); // 20ms
osTimerStart (img timer, 50); // 5ms

//Signal and wait threads
kbd handler ID = osThreadCreate(osThread(kbd handler), NULL);
display update ID = osThreadCreate(osThread(display update), NULL);

// delete the main thread so that it does not interfere with scheduling

osThreadTerminate(t main ID);
for (;;);

Utils.h

/**/

/* Utils.h: Utility functions and defintions */
/**/

/* Created by Tal Zaitsev, 2018 */

/**/

#ifndef UTILS H
#define UTILS H
#include "LPCl7xx.H" /* LPCl7xx definitions */

// sprite struct that packs the sprite bitmap info with descriptive info
typedef struct {

int x, y; // x and y coordinates of the image on the GLCD

int width, height; // width and height of a bitmap image

unsigned char *ptr; // pointer to the bitmap array

int index; // index of image in a bitmap array, for bitmaps with multiple images
} Sprite;

// sprite wrapper that can supports easy timed bitmap image transitions
typedef struct {

Sprite sprite; // the sprite container

int num_imgs; // # of images in the animation

uint32 t last update; // # of ticks at last sprite update
int update msec; // # of milliseconds between image updates

} AnimatedSprite;

// draws a sprite on the screen, based on the info in the struct
void draw_sprite(Sprite *sprite);

// draws a sprite, but skips pixels that have a value of alpha color (defined in utils.c)

void draw_sprite alpha(Sprite *sprite);
// fills the area of the screen that the sprite takes up with the passed color
void clean sprite area(Sprite *sprite, unsigned short color);

#endif

OCO~NOOUITRWNE

12

22

Utils.c

/* Utils.c - Tal Zaitsev, F2018 */

#include "LPCl7xx.H" /* LPCl7xx definitions */
#include "Utils.h"
#include "GLCD.h"

// the color that will be considered as transparancy in the bitmap
unsigned short alpha color = Magenta;

// draws a sprite on the screen, based on the info in the struct
void draw sprite(Sprite *sprite) {
GLCD Bitmap(sprite->x, sprite->y, sprite->width, sprite->height,
sprite->ptr + sprite->index* (sprite->width*sprite->height*2));
}

// draws a sprite, but skips pixels that have a value of alpha color
void draw sprite alpha(Sprite *sprite) {
GLCD BitmapAlpha (sprite->x, sprite->y, sprite->width, sprite->height,
sprite->ptr + sprite->index*(sprite->width*sprite->height*2), alpha color);
}

// fills the area of the screen that the sprite takes up with the passed color
void clean sprite area(Sprite *sprite, unsigned short color) {

GLCD Fill(sprite->x, sprite->y, sprite->width, sprite->height, color);
}

GLCD_SPI_LPC1700.c (modified part only)

/***

* Display graphical bitmap image at position x horizontally and y vertically *
* (This function is optimized for 16 bits per pixel format, it has to be *
* adapted for any other bits per pixel format) *
* Parameter: X: horizontal position *
* y: vertical position *
* w: width of bitmap *
* h: height of bitmap *
* bitmap: address at which the bitmap data resides *
* Return: *
* Modified by Tal Zaitsev, 2018 *
* Modified to properly draw (or not draw!) bitmaps which are partially or *
* completely out of bounds of the display pixels. Also, pixel draw direction *
* was changed to draw images the right way up (they had to be flipped before) *
*

**/

void GLCD Bitmap (int x, int y, unsigned int w, unsigned int h, unsigned char *bitmap) {
int 1, 37

int startx = 0, endx = w;

unsigned short *bitmap ptr = (unsigned short *)bitmap;

if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) {
return;

}

if((x + w) > WIDTH) { // x overflow
startx = 0;
endx = WIDTH - x;

} else if(x < 0) { // x underflow
startx = -x;
endx = w;
x = 0; // for GLCD SetWindow

}

GLCD SetWindow (x, y, endx - startx, h);

23

wr_cmd (0x22) ;
wr dat start();

for (i

= 0; 1 < h*w; i += w) {

for (j = startx; j < endx; j++) {
wr dat only (bitmap ptr[i+j]);

}

}

wr dat stop();
}
/***
* Display graphical bitmap image at position x horizontally and y vertically *
* (This function is optimized for 16 bits per pixel format, it has to be *
* adapted for any other bits per pixel format) *
* When drawing, skips the rendering of all pixels that have the same value as *
* alpha color *
* Parameter: X: horizontal position *
* y: vertical position *
* w: width of bitmap *
* h: height of bitmap *
* bitmap: address at which the bitmap data resides *
* alpha color: «color that is used for transparancy *
* Return: *
* Added by Tal Zaitsev, 2018 *
***/

void GLCD BitmapAlpha (int x, int y, unsigned int w, unsigned int h, unsigned char *bitmap,
unsigned short alpha color) {

int i, j, wr_started = 0;
int startx = 0, endx = w;
unsigned short *bitmap ptr = (unsigned short *)bitmap;
if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) {
return;
}
if((x + w) > WIDTH) { // x overflow
startx = 0;
endx = WIDTH - x;
} else if(x < 0) { // x underflow
startx = -x;
endx = w;

x = 0; // for GLCD SetWindow

}

GLCD SetWindow (x, y, endx - startx, h);

wr_cmd (0x22) ;
wr_dat start();
wr started = 1;

for (i = 0; 1 < h*w; i += w) {
for (j = startx; j < endx; j++) {
if (bitmap ptr[i+j] != alpha color) {
if (wr_started == 0) {
wr dat start();
wr started = 1;
}
wr dat only (bitmap ptr[i+j]):;
} else {
if(wr started == 1) {

}

wr_aét_stop();
wr started = 0;

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

o e o
URWNROOO~NOUIRWNE

(void) rd dat();
}
}
}
wr_dat_stop();
}

/***

Fill region with specified color *
* Parameter: X: horizontal position *
* y: vertical position *
* w: width of bitmap *
* h: height of bitmap *
* color: color to fill region with *
* Return: *
* Added by Tal Zaitsev, 2018 *
***/

void GLCD Fill (int x, int y, unsigned int w, unsigned int h, unsigned short color)

int i, j;

int startx = 0, endx = w;

if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) {
return;

}

if((x + w) > WIDTH) { // x overflow
startx = 0;
endx = WIDTH - Xx;

} else if(x < 0) { // x underflow
startx = -x;
endx = w;
x = 0; // for GLCD_ SetWindow

}

GLCD SetWindow (x, y, endx - startx, h);
GLCD_ SetWindow (x, y, w, h);

wr_cmd (0x22) ;
wr dat start();
for (i = 0; i < h*w; i += w) {
for (3 = 0; J < w; J++) {
wr_dat only(color);
}

}
wr_dat_stop();

MenuGUI.h

24

/*****************************‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k*‘k***‘k************************/

/* MenuGUI.h: Simple GUI menu for the LPCl7xx */

/**/

/* Created by Tal Zaitsev, 2018 */

/**/

#ifndef MENU GUI H
#define MENU GUI H

extern int menu select;

// used for menu state entry

void MenuGUI Init(void);

// used for graphical update of the menu
void MenuGUI Update(uint32 t ticks);

16
17
18

20

e e
WNRFROOWONOUTAWN

14

// used for passing input data to the menu
void MenuGUI Input(uint32 t key);

fendif

MenuGUI.c

/* MenuGUI.c

- Tal Zaitsev, F2018 */

#include <stdlib.h>
finclude <stdio.h>

#include "LPCl7xx.H"

/* LPCl7xx definitions

#include "cmsis os.h"
#include "GLCD.h"
#include "KBD.h"
#include "Utils.h"
#include "MenuGUI.h"

// the x and y size of the icon images. requires icons to be square bitmaps
#define ICON_SIZE 35

// padding between first icon an lefmost side,

#define ICON_PADDING 53
// y value of the (only) row of icons

#define ICON Y

// number of menu items. For more reusable code, this would be a variable that gets set during

// initialization
#define NUM ICONS 3
// padding, in pixels, between walls of highlight box and icon
#define SELECTION PADDING 10
// color of highlight box that highlights the selected item
#define SELECTION COLOR Blue

50

// bitmap data for background and icons
extern unsigned char MENU BACK pixel datal[];
extern unsigned char ICON SET pixel datall;

// icon and backround sprite images
Sprite icons[NUM ICONS];
Sprite background;

// menu selection index. can be anything between 0 and NUM ICONS - 1
int menu select = 0;

// flag that prevents needless menu redraws. set only when selection changes,
// 1 = needs update, 0 = no need for update

int needs_ update;

// sets up the bitmaps for initial rendering of the menu

// used for initial initialization, and for entering the menu
// by returning from the other states

void MenuGUI Init(void) {

int 1i;

// set flag so that menu is drawn the first time
needs update = 1;

// initialize icon sprites from the icon set
for(i = 0; i < NUM ICONS; i++) {
icons[i] .width = icons[i].height = ICON SIZE;

icons[i] .x
icons[i].y

ICON PADDING + i * (ICON SIZE + ICON_PADDING) ;
ICON_Y;

icons[i] .index = 0O;
icons[i] .ptr

}

= TCON SET pixel data + i * (ICON SIZE * ICON SIZE * 2);

// Initialize the backround image sprite

background.x

background.y = 0;

*/

and between all consecutive icons

or at init.

o
BPWNRFROOONOUTRWNE

background.width = 320;
background.height = 240;
background.ptr = MENU BACK pixel data;
background.index = 0;

}

void MenuGUI Update(uint32 t ticks) {
int 1i;
if (needs_update) {
// draw background first
draw_sprite (&background) ;

for(i = 0; i < NUM ICONS; i++) {
// 1if this icon is selected, highlight it with the selection color
if (i == menu_select) {

GLCDiFill (icons[i].x - SELECTION PADDING, icons[i].y - SELECTION PADDING,
ICON _SIZE + 2 * SELECTION PADDING, ICON SIZE + 2 * SELECTION PADDING,
SELECTION7COLOR) ;
}
// draw the icon overlaid on the background, or on the highlight box
draw_sprite alpha(&icons[i]);

}
// clear flag now that menu was updated
needs update = 0;

}
}

void MenuGUI Input(uint32 t key) {
switch (key) {
case KBD LEFT:

// updates the selection, if it didn't reach the leftmost item yet

// sets flag that menu needs update if the selection changed

if (--menu_select < 0) {
menu select = 0;

} else {
needs update = 1;

}

break;

case KBD RIGHT:
// updates the selection, if it didn't reach the rightmost item yet
// sets flag that menu needs update if the selection changed
if (++menu_select >= NUM ICONS) {

menu_select = NUM ICONS - 1;
} else {
needs update = 1;
}
break;
}
}

FlappyBird.h
/**/
/* FlappyBird.h: Flappy Bird port for the LPC1768 */
/**/
/* Created by Tal Zaitsev, 2018 */

y

/**k**k************************/

#ifndef FLAPPYBIRD H
#define FLAPPYBIRD H

void FB Init(void);
void FB Update(uint32 t ticks);
void FB_Input Jump(void);

#endif

O©COoO~NOOUIR~RWNE-

FlappyBird.c

27

/* FlappyBird.c

#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
"LPCl7xx.H"
"cmsis os.h"
"GLCD.h"
"Utils.h"
"FlappyBird.h"

- Tal Zaitsev, F2018 */

/* LPCl7xx definitions */

// color used for the background. Used for cleaning sprite areas

#define

#define
#define
#define

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define

#define
#define

BACK_COLOR

TEXT HEIGHT
VIEW WIDTH
VIEW HEIGHT

SCROLL_MSEC
SCROLL_JUMP

GRAVITY

TIME STEP MSEC
PIXELS PER METER
JUMP VELOCITY

BIRD WIDTH
BIRD HEIGHT
BIRD MAX INDEX
BIRD FLAP MSEC
SPAWN X
SPAWN Y

PIPE WIDTH
PIPE HEIGHT

MIN GAP_SIZE
MAX GAP SIZE
NUM_WALLS
PIPE MIN HEIGHT

White

24
320

(240 - TEXT HEIGHT) // room for score text on bottom

60 // period of map scroll, in milliseconds
5 // # of pixels to jump per scroll

(2.3f * 9.81f)
40

18

(0.8f * GRAVITY)

34
24
2
200
100
50

26
160

(BIRD_HEIGHT + 2 * 15) // bird height + padding on each side
(BIRD_HEIGHT + 2 * 30) // bird height + padding on each side

2
36

GAME STATE WAITING O
GAME STATE PLAYING 1

// encapsulates both top and bottom pipe sprites,
// as well as collision detection info

typedef
Sprite
Sprite
int x;

struct {
top pipe;
bottom pipe;

int gap_y;

uint8
} PipeWa

t passed;
11;

// bitmap data used for game
nsigned char TOP PIPE pixel datall;
nsigned char BOTTOM PIPE pixel datall;
nsigned char BIRD BLUE pixel datall;
nsigned char NUM pixel datall;

extern u
extern u
extern u
extern u

// used for updating each section of the game logic
uint32 t map last tick = 0;
uint32 t bird last tick = 0;

28

uint32 t flap last tick = 0;

// bird sprite

Sprite bird;

// array of wall obstacles
PipeWall walls[NUM WALLS];
float bird velocity = 0;

// the current gap size. This is reduced every 5 walls until a limit
int gap_size;

uint8 t game state = GAME STATE WAITING;
// player score
uint8 t score = 0;

// simple inline function that generates the top pipe sprite, given pipe height and x position
static _ INLINE void gen top pipe(Sprite *sprite, unsigned char *bitmap,
int pipe height, int x) {

sprite->x = x;

sprite->y = 0;

sprite->width = PIPE WIDTH;

sprite->height = pipe height;

sprite->ptr = bitmap + (PIPE HEIGHT - pipe height)* (PIPE WIDTH*2) ;

sprite->index = 0;

}

// simple inline function that generates the bottom pipe sprite, given pipe height and x position
static _ INLINE void gen bottom pipe(Sprite *sprite, unsigned char *bitmap,
int pipe height, int x) {

sprite->x = x;

sprite->y = VIEW HEIGHT - pipe height - 1;

sprite->width = PIPE WIDTH;

sprite->height = pipe height;

sprite->ptr = bitmap;

sprite->index = 0;

}

// simple inline function that cleans the delta area between old and new wall positions
// this leads to performance improvement, as only a sliver of an area has to be cleaned,
// instead of the whole wall sprite area
static _ INLINE void clean sprite pipe area(Sprite *sprite, uintlé t color) {
GLCD Fill(sprite->x + sprite->width - SCROLL JUMP, sprite->y,
2 * SCROLL JUMP, sprite->height, color);
}

// simple inline function that checks if a given wall is out of bounds of the game
static _ INLINE int is wall finished(PipeWall *wall) ({

return (wall->top pipe.x + wall->top pipe.width) < 0;
}

// draws the score in the bottom left corner
void draw score() {
char score str[12];
sprintf(score str, "Score: %d", score);
GLCD_SetBackColor(Yellow) ;
GLCD_SetTextColor (Black);
GLCD DisplayString(9, 0, 1, score str);
}

void generate wall(PipeWall *wall, int x) {
// randomly generates a wall height, within the acceptable bounds
wall->gap y = PIPE MIN HEIGHT + (rand() % (VIEW HEIGHT - gap size - 2 * PIPE MIN HEIGHT));

gen_top pipe(&wall->top pipe, TOP PIPE pixel data, wall->gap y, x);
gen_bottom pipe(&wall->bottom pipe, BOTTOM PIPE pixel data,
VIEW HEIGHT - wall->gap y - gap_size, x);

131 wall->x = x;

132 wall->passed = 0; // wall was just generated, therefore was not passed yet
133 }

134

135

136 // used for respawning and at the beginning of the game

137 void game reset(void) {

138 // waits for initial user input to start playing

139 game state = GAME STATE WATITING;

140

141 map last tick = bird last tick = flap last tick = 0;

142

143 // regenerates the first 2 initial walls

144 generate wall(&walls[0], VIEW WIDTH) ;

145 generate wall (&walls[1], 1.5 * VIEW WIDTH) ;

146

147 // sets the bird into the spawn position

148 bird.x = SPAWN X;

149 bird.y = SPAWN Y;

150 bird.width = BIRD WIDTH;

151 bird.height = BIRD HEIGHT;

152 bird.ptr = BIRD BLUE pixel data;

153 bird.index = 0;

154 bird velocity = 0;

155

156 // resets all game specific parameters

157 gap size = MAX GAP SIZE;

158 score = 0;

159 }

160

161 // handles map scrolling and wall regeneration once they exit the bounds
162 // also, updates score when walls are passed

163 void map update() {

164 int 1i;

165 for(i = 0; i < NUM WALLS; i++) {

166 // clean all drawn areas that need updating

167 clean sprite pipe area(&walls[i].top pipe, BACK COLOR) ;
168 clean sprite pipe area(&walls[i].bottom pipe, BACK COLOR) ;
169

170 // update x values

171 walls[i].x = walls[i] .bottom pipe.x = walls[i].top pipe.x -= SCROLL JUMP;
172 if(is wall finished(&walls[i])) {

173 generate wall(&walls[i], VIEW WIDTH) ;

174 }

175 // redraw all updated sprites

176 draw sprite alpha(&walls[i].top pipe);

177 draw_sprite alpha(&walls[i].bottom pipe);

178

179 if('walls[i] .passed && (walls[i].x + PIPE WIDTH) < bird.x) {
180 score++;

181 // make gap in wall smaller every 5 walls

182 if(score % 5 == 4) {

183 gap_size -= 5;

184 if (gap_size < MIN GAP SIZE) gap size = MIN GAP SIZE;
185 }

186 draw_score() ;

187 walls[i].passed = 1; // count the wall as passed

188 }

189 }

190 }

191

192 // handles bird update logic, like gravity and collision detection
193 void bird update() {

194 static int i = 0;

195 // update velocity due to gravity

196 bird velocity += GRAVITY * TIME STEP MSEC / 1000.0f;

197 // clean old sprite area

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

30

clean sprite area(&bird, BACK COLOR) ;

// update bird position based on velocity
bird.y += PIXELS PER METER * bird velocity * TIME STEP MSEC / 1000.0f;

// redraw the bird in its new position
draw_sprite alpha(&bird) ;

// Collision detection of bird with pipes and ground
if(bird.y + BIRD HEIGHT > VIEW HEIGHT) { // hit bottom

bird.y = VIEW HEIGHT - BIRD HEIGHT;

// redraw bird at ground, and not below ground

clean sprite area(&bird, BACK COLOR) ;

draw_sprite alpha(&bird);

game reset();

return;

}

// checks for collision with any of the walls
for(i = 0; i < NUM WALLS; i++) {
// first check if bird is within bounds of the complete wall
if (' ((bird.x <= walls[i].x &&
(bird.x + BIRD HEIGHT) <= walls[i].x) ||
(bird.x >= (walls[i].x + PIPE WIDTH) &&
(bird.x + BIRD WIDTH) >= (walls[i].x + PIPE WIDTH)))) {
// bird is within bounds of wall, so check y axis to see if it's in passable area
if(bird.y < walls[i]l.gap_ y ||
(bird.y + BIRD HEIGHT) > (walls[i].gap y + gap_size)) {
// collision!
game reset();
return;
}
}
}
}

// initializes the Flappy Bird game
void FB Init() {
// reset the game to a clean playable state
game reset();
// fills in the score footer area with a background color
GLCD Fill(0, VIEW HEIGHT, VIEW WIDTH, TEXT HEIGHT, Yellow);
}

// update handler for the Flappy Bird game
void FB Update(uint32 t ticks) {
if (game state == GAME STATE WAITING) { // if waiting, nothing to do
return;

}

// if map update time period reached

if (ticks - map last tick >= osKernelSysTickMicroSec(10000*SCROLL MSEC)) {
map_update() ;
map last tick = ticks;

}

// if bird update time period reached

if (ticks - bird last tick >= osKernelSysTickMicroSec(10000*TIME STEP MSEC)) {
bird update() ;
bird last tick = ticks;

}

// if bird flap time period reached

if (ticks - flap last tick >= osKernelSysTickMicroSec(10000*BIRD FLAP MSEC)) {
// simply increase the bitmap index of the bird, and reset to 0 if overflow
if (++bird.index > BIRD MAX INDEX) bird.index = 0;
flap last tick = ticks;

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

NRRRRRRRRR e
COONOUIRWNROOWONOUITAWN L

NN
WN

24

}

// for each event time handler, reset last tick so that it can restart counting

}

// if game is waiting to start, start the game
// otherwise, make bird jump
void FB_ Input Jump(void) {
switch(game state) {
case GAME STATE WAITING:
game state = GAME STATE PLAYING;

GLCD_Fill(V, 0O, VIEW WIDTH, VIEW HEIGHT, BACK_COLOR);
GLCD_Fill(0, VIEW HEIGHT, VIEW WIDTH, TEXT HEIGHT, Yellow);
break;

case GAME STATE PLAYING:
bird velocity -= JUMP VELOCITY;

break;

}
}

usbhw.c (USB_IRQHandler only)

31

/%
* USB Interrupt Service Routine

*/

void USB_IRQHandler (void) {
uint32 t disr, val, n, m;
uint32 t episr, episrCur;

disr = LPC_USB->USBDevIntsSt; /* Device Interrupt Status */

/* Device Status Interrupt (Reset, Connect change, Suspend/Resume) */
if (disr & DEV STAT INT) {
LPC USB->USBDevIntClr = DEV_STAT INT;
WrCmd (CMD_GET DEV_STAT) ;
val = RdCmdDat (DAT GET DEV_STAT) ; /* Device Status */
if (val & DEV_RST) { /* Reset */
USB_Reset();
#if USB_RESET EVENT
USB_Reset Event();
#endif
}
if (val & DEV_CON CH) { /* Connect change */
#if USB POWER EVENT
USB_Power Event(val & DEV_CON) ;

#endif
}
if (val & DEV_SUS _CH) { /* Suspend/Resume */
if (val & DEV_SUS) { /* Suspend */
USB_Suspend() ;
#if USB_SUSPEND EVENT
USB_Suspend Event () ;
#endif
} else { /* Resume */
USB_Resume () ;
#if USB_RESUME_EVENT
USB_Resume Event();
#endif

}
}
goto isr end;

}

#if USB_SOF_ EVENT
/* Start of Frame Interrupt */
if (disr & FRAME INT) {

109
110
111
112

USB_SOF Event () ;
LPC_USB->USBDevIntClr = FRAME INT; // WIF.... how could this be the missing piece???

}
fendif

#1f USB_ERROR EVENT
/* Error Interrupt */
if (disr & ERR _INT) {
WrCmd (CMD RD_ERR_STAT) ;
RACmdDat (DAT RD ERR_STAT) ;
USB _Error Event(val);

val

}
#endif

/* Endpoint's Slow Interrupt */

if (disr & EP_SLOW_INT) {
episrCur
episr

for (n

LPC USB->USBEpIntSt;
; n < USB_EP NUM; n++) {

if (episr == episrCur) break;
if (episr & (I << n)) {
episrCur |= (1 << n);

}
}

m

n >> ;

LPC USB->USBEpIntClr = (1 << n);

while ((LPC_USB->USBDevIntSt

val

= LPC USB->USBCmdData;

if ((n & == 0) {
if (n == 0) {

}

if (val & EP_SEL STP) ({
if (USB_P_EP[0]) {
USB_P EP[0] (USB_EVT SETUP);
continue;
}
}

if (USB_P EP[m]) {

}

USB_P _EP[m] (USB_EVT OUT) ;

} else {
if (USB_P _EP[m]) {

}

}

USB P EP[m] (USB_EVT IN);

LPC_USB->USBDevIntClr = EP_SLOW_INT;

}

#if USB_DMA

if (LPC USB->USBDMAINtSt &) {
LPC USB->USBEoTIntSt;

val

for (n

= 2; n < USB_EP NUM; n++) {
if (val & (1 << n)) {

m=mn > 1;

if ((n & == 0) {
if (USB P EP[m]) {

USB_P_EP[m] (USB_EVT OUT DMA EOT)

}

} else {

}

}

if (USB P EP[m]) {

}

USB_P EP[m] (USB_EVT IN DMA EOT) ;

/* Check All Endpoints */
/* break if all EP interrupts handled */

& CDFULL_INT) == 0);

/* OUT Endpoint */
/* Control OUT Endpoint */
/* Setup Packet */

/* IN Endpoint */

/* End of Transfer Interrupt */

/* Check All Endpoints */

/* OUT Endpoint */

/* IN Endpoint */

32

33

113 }

114 LPC_USB->USBEoTIntClr = val;

115 }

116

117 if (LPC_USB->USBDMAIntSt &) | /* New DD Request Interrupt */
118 val = LPC_USB->USBNDDRINtSt;

119 for (n = 2; n < USB_EP _NUM; n++) { /* Check All Endpoints */
120 if (val & (1 << n)) {

121 m=n >> 1;

122 if ((n & = 0) { /* OUT Endpoint */
123 if (USB_P_EP[m]) {

124 USB_P EP[m] (USB_EVT OUT DMA NDR) ;

125 }

126 } else { /* IN Endpoint */
127 if (USB_P EP[m]) {

128 USB_P _EP[m] (USB_EVT IN DMA NDR) ;

129 }

130 }

131 }

132 }

133 LPC_USB->USBNDDRIntClr = valj;

134 }

135

136 if (LPC_USB->USBDMAIntSt &) { /* System Error Interrupt */
137 val = LPC_USB->USBSysErrIntSt;

138 for (n = 2; n < USB_EP _NUM; n++) { /* Check All Endpoints */
139 if (val & (L << n)) {

140 m=n >> 1;

141 if ((n & = 0) { /* OUT Endpoint */
142 if (USB_P_EP[m]) {

143 USB_P_EP[m] (USB_EVT OUT DMA ERR);

144 }

145 } else { /* IN Endpoint */
146 if (USB_P_EP[m]) {

147 USB_P EP[m] (USB_EVT IN DMA ERR);

148 }

149 }

150 }

151 }

152 LPC_USB->USBSysErrIntClr = val;

153 }

154

155 #endif /* USB_DMA */

156

157 isr end:

158 return;

159 }

34
APPENDIX |1l — BITMAP DEFINITIONS

Table 1 — Bitmap Definitions

Bitmap name Section Usage Dimensions | Number

P g (XXY pixels) | of sprites
BIRD_BLUE_pixel_data Flappy Bird | Bird sprite 34x24 3
BOTTOM_PIPE_pixel _data | Flappy Bird | Top wall sprite 26x160 1
TOP_PIPE pixel data Flappy Bird | Bottom wall sprite 26x160 1

. Image Windows XP style explorer window
BORDER_TOP_pixel_data Gallery top 320x48 1
IMG._1_pixel_data Image Demo image 1 (Windows XP 2995172 1
Gallery background)
. Image Demo image 2 (Ryerson Formula
IMG_2_pixel_data Gallery Racing) 229x172 1
IMG_3_pixel_data IGrngge?y Demo image 3 (stickman animation) 92x150 2
GALLERY_NAV pixel data IGn;?Igeiy Image gallery navigation instructions 81x53 1
MENU_BACK _pixel_data Main menu | Windows XP style background 320x240 1
ICON_SET _pixel_data Main menu | WVindows XP style icons for 35x35 3
subsections

