
Tal Zaitsev

Abstract The objective of the COE718 final project was

to design and implement a media centre mockup on an

ARM-based microcontroller, utilizing the embedded

system design methodologies learned in the course. The

development was done on the MCB1700 ARM Cotex-

M3 development board. The project successfully

demoed the concepts learned in class in an entertaining

fashion, and was–in some way–the cumulative result of

all of the labs performed in the course.

I. INTRODUCTION

MBEDDED systems are some of the most hidden, yet

prevalent, gems of our modern society. Almost any

modern device, be it grid-powered, battery-powered, or

even solar-powered, has some form of computational

logic that controls its functionality. According to [1],

there is a projection that 31 billion microcontrollers will

be sold in 2018, with the number increasing to 50 billion

for 2019. To put this statistic into perspective, it is

expected that in 2019, there will be 6.5 microcontrollers

per each person on the whole planet.

Applications of embedded systems are endless, and

can be found in things such as microwaves, fridges, cars,

elevators, satellites, rockets, and even credit cards and

other RFID technology. With the recent advent of

Internet of Things technology, embedded systems will be

integrated into more and more devices, leading to a world

of limitless opportunities. To keep up with such a vast

and quickly-growing embedded systems market, it is

important that future designers understand how to fully

utilize the powerful technologies packed away in these

miniature systems. Not only is it in the best interest of

commercial companies that their products function

properly, but there are also critical applications of

embedded systems where public safety is at stake; some

examples are public defibrillators, autonomous vehicles,

air bag controllers in vehicles, and many more.

The COE718 Embedded Systems Design course

teaches what embedded systems are and how they are

implemented, with a focus on real-time operation. While

there are many microcontroller vendors and

architectures, the course uses the ARM Cortex-M3.

However, while the lab and project implementations use

this specific microcontroller, the code can be ported to

other processors.

The purpose of the Media Centre project is to provide

students with the opportunity to design and implement a

complete project, from start to finish. The project outline

defines several high-level specifications that have to be

met by the final project: the project must implement a

picture gallery, sound player, and a game. The project

must also incorporate several peripherals in the process

of meeting these specifications, such as the use of a

graphic display over SPI, audio streaming over USB, AD

conversion of a potentiometer voltage, and GPIO

processing for the on-board joystick. The

implementation is performed on the MCB1700 board,

with an LPC1768 microcontroller, and is programmed in

the uVision IDE. The high-level architecture of the

project was implemented with the help of the Finite State

Machine paradigm. The game developed for this project

was Flappy Bird. The project was completed

successfully, and implemented all of the requirements.

II. PAST WORK

Before this final project, there were four labs that

highlighted different features of the MCB1700 board, the

LPC1768 microcontroller, or ARM Cortex-M3

processor in general.

Lab 1 provided an introduction to uVision and the

overall project workflow of developing on the

MCB1700. This lab first introduced the graphic LCD

(GLCD), LED control through a middleware library, and

joystick input through the KBD middleware library. This

lab also demonstrated the use of the ADC peripheral for

reading the value of the on-board rotary potentiometer.

The final result of this lab was a system that read the

potentiometer value and the joystick state, and displayed

these values on the GLCD. It also lit up different LEDs,

depending on the joystick state.

Lab 2 was more involved, and introduced the concepts

of bit-banding, conditional execution, and barrel-shifting

[2]. Bit-banding is a method of accessing specific bits of

a register, without incurring the cost of accessing the full

register. There are many times in an embedded

environment when a single bit must be read or toggled.

Without bit-banding, a processor must load the full value

of a register, then AND or OR it with a mask, and then

finally store it again. Bit-banding provides a

workaround, by having specific address ranges of the

COE718: Media Centre Project implemented

on the RTX Real Time Kernel

Tal Zaitsev () – tal.zaitsev@ryerson.ca

E

xxxxxxxxx

xxxxxxxxx

2

microcontroller act as a map for individual bits in another

address range. This allows the microcontroller to

perform atomic operations using the address of an

individual bit. Figure 1 visually explains how the

memory is mapped for this feature.

Labs 3 and 4 presented real-time (RT) operations using

the Keil RTX kernel. In these labs, different task

scheduling methods were investigated, with different

priority setting schemes. Concepts such as Round Robin

(RR) were compared to Rate Monotonic Scheduling

(RMS). The performance of these methods was

analyzed, and this work contributed to some key design

decisions for this project, such as how to structure the

high-level architecture of this final project.

III. METHODOLOGY

The high-level architecture of this project is defined as

a finite state machine (FSM), with pre-emptive

scheduling of two fundamental threads using the RTX

kernel. The two simple threads are used for input

handling and display/logic updates. The implementation

of the FSM is fully modular, making it very simple to add

or remove states.

A. RTX Threads

 The heartbeat of the whole system are the two

scheduled threads: kbd_handler and display_update.

Each thread is scheduled by a virtual timer that splits up

the thread execution times into deterministic time slices.

Both threads are set up as infinite loops, and wait for an

event triggered by their respective timers. The purpose of

the kbd_handler thread is to handle joystick input. Since

reliable user input (through the joystick) is critical for

performance, this thread is scheduled to be triggered

every 5ms. For the same reason, this thread is also of a

higher priority than the display_update thread. This

allows the input handling thread to pre-empt the display

update thread in reliable and deterministic periods. It is

important to note that the input handling thread does not

perform any expensive calculations or display updates,

and only updates state variables, or other simple

variables.

The display_update thread is used to update the display

for the purpose of animations, and to handle any required

logic updates/calculations. This thread is the heavy-duty

worker of the project, and most execution time is spent

in this thread. The only time that this thread idles is when

a state does not require any display updates, which

happens in the MP3 player state; in this state, the screen

is only drawn once on state entry, and does not require

any further updates (this is explained in more detail in the

Design section). Due to the nature of this thread, its

period is set to 20ms. Depending on what the system is

currently doing, each cycle of the thread could finish well

within the 20 ms period (such as the MP3 player

example), or utilize most of the allotted period (e.g. when

playing the game). The relationship between the two

threads can be seen in Figure 2. In the figure, several

examples of the display_update thread with different

utilizations are given. The first thread cycle runs with a

higher utilization, and takes up most of the 20ms period.

The second has a lower utilization, possibly due to the

system now being in a state that requires less cycle-to-

cycle updates. The third and fourth cycles take have full

utilization of their periods. Note that the black triangle

symbolizes the end of a computation.

Figure 2 – RTX thread scheduling diagram

B. Finite State Machine

As mentioned, the overall architecture of the project

utilizes an FSM paradigm for easy maintenance and

configuration. This method of setting up each section of

the project allows for the encapsulation of each section.

This leads to cleaner code, by promoting code reuse, and

makes it easy to compartmentalize each section for

quicker development and debugging.

Each state is characterized by a state input handler, and

a state update handler. For most states, it is also

important to handle state transitions i.e. state entry/exit.

Therefore, state definitions are required to also define a

Figure 1 – Bit-banding memory mapping[3]

3

state entry handler, and can optionally define a state exit

handler as well. This type of transition handling presents

significant performance improvements to the overall

projects, as some tasks should only be executed on these

transitions. If the FSM did not have the capability to react

to transitions, the developer would be forced to create

separate state-tracking variables, leading to overhead

both in code development and program

execution/memory usage.

In this project, there are 4 states: main menu state,

image gallery state, MP3 player state, and game state.

Some of these states can have substates, but these are

defined within the scope of the state content and are not

handled by the overall FSM. The states, and their

possible transitions, can be found in Figure 3. As can be

seen in the figure, the only way to transition from one

state to another is by first going through the main menu

state. Therefore, the main menu can be thought of as a

visual directory for all other available states, and is the

first state that the user interacts with.

IV. DESIGN

A. RTX Kernel Configuration

The RTX kernel is configured to have a default thread

stack size of 400 bytes, instead of the default 200 bytes.

This allows for the stack space needed for GLCD

operation. Also, RR operation is disabled, as the threads

are scheduled by virtual timers instead.

B. Finite State Machine Implementation

The FSM outlined in the Methodology section is

implemented through the definition of a StateDef

structure and the utilization of function pointer typedefs.

Figure 10 (Appendix I) outlines the various components

of the FSM implementation used in this project. The

entry and exit handlers do not take any arguments. The

input handler takes an argument of what joystick button

has been pressed. This argument is passed from the

kbd_handler thread, as can be seen in the flowchart in

Figure 12 (Appendix I). On the other hand, the update

handler takes a “ticks” argument. This parameter is the

number of ticks that have passed since the start of the

program, as kept track of by the RTX kernel. The reason

this parameter is passed to update handlers is to facilitate

any types of updates that require consistent timing. This

requirement comes up for the game logic, as well as for

animated sprites shown in the image gallery.

C. Sprites, AnimatedSprites, and GLCD

Modifications

To make bitmap rendering easier, especially when a

single bitmap array might have multiple images at

different indices, a structure called Sprite was created.

The Sprite struct, as defined in the Utils.h header

(Appendix II), defines sprite descriptor parameters that

describe how to access the desired image out of the

bitmap array. A Sprite is declared by setting its x and y

location on the screen, setting the width and height of the

bitmap to appropriate values, and then setting the ptr

field to point to the bitmap array. The index field should

be set to zero, unless there are other bitmaps in the

bitmap array pointed to by ptr, and one of those other

bitmaps is the one that should be displayed. The Utils.h

header also defines a draw_sprite function that takes a

pointer to a sprite as an argument. This function is a

wrapper function for the GLCD_Bitmap function that

makes it much easier to draw sprites. Instead of manually

using all of the sprite parameters, the developer passes a

pointer to the sprite, and the draw_sprite function handles

all of the parameter extraction for the proper rendering of

the sprite. There are two other utility functions as well:

draw_sprite_alpha and clean_sprite_area. These utility

functions utilize the GLCD modifications and additions.

1) GLCD Addition: Alpha Support

One of the GLCD additions is support for transparency

in bitmaps. There are many instances where a bitmap

image is not actually rectangular, but some other

complex shape. A perfect example is the rendering of the

icons on the main menu screen. The main menu has an

image for a background, and has icons drawn on top of

this background. Without transparency support, the icons

must have a solid color background behind them, or must

be of a rectangular shape. This is why the GLCD library

Figure 3 – High-level finite state machine

4

was modified to add a function called

GLCD_BitmapAlpha. This function is nearly identical1

to the GLCD_Bitmap function, except for an additional

argument called alpha_color. This new function will

draw bitmap data to the screen in the same way as the old

function, but will skip any pixels where the pixel color

equals alpha_color. The effect of this logic is that any

pixels that are meant to be transparent will not be drawn,

and therefore will not overwrite any background pixels.

This leads to a transparency effect.

However, the LCD controller does not use absolute

coordinates when drawing pixels to the screen. To draw

to the screen, an “active” area must first be configured

somewhere on the screen. Then, sequential data writes

are performed to the screen. The LCD controller

automatically maps this sequential data into the active

window, by incrementing the current pixel row number,

and then wrapping around to the next row once the end

of the current row has been reached. The effect of this

feature, which does make writing to the screen easier, is

that there is no simple way to access or skip over

individual pixels using its absolute coordinates.

Therefore, the only way to “skip” a pixel due to it having

a transparent color is by performing a dummy read.

Performing a read operation will read the pixel value at

the current pixel address, and then increment the address

as though data had been written. This effectively skips

the pixel.

The transparency color can be any color, but should

preferably be a color that is the least likely to be used.

For this project, magenta was used as the transparency.

This is a common transparency color as it is rarely used.

An example of a bitmap with a transparent background

can be found in Figure 4.

Figure 4 – Example of a bitmap with a

transparency color

1 Excluding the modifications mentioned in Subsection 3)

2) GLCD Addition: Area Fills

There are multiple functions within the project that

require a fill of an area of the scree with a solid color. A

common usage of area fills is for sprites that are moving

throughout the screen, such as the bird and pipes in

Flappy Bird. Using the existing GLCD_Clear function

greatly diminishes performance since the whole screen

has to be filled, and is a highly inefficient method of

achieving the task. Instead, only the area where a sprite

used to be needs to be filled to the background color. This

could be accomplished with having a solid fill bitmap

that is the same size as the sprite to be cleaned off the

screen. However, this bitmap now needs to be stored in

the flash memory of the microcontroller–a very

expensive resource, especially in a large project such as

this one. Also, there must exist multiple such bitmaps for

every bitmap size used in the program, unless the solid

fill bitmap is somehow reused for all of the bitmaps. In

either case, the complexity of the project increases by

orders of magnitude, over something that is a quite

simple issue to resolve.

Instead, a function called GLCD_Fill was

implemented. This function is similar to the

GLCD_Bitmap, except that instead of taking a pointer to

a bitmap array, it takes a color parameter. The

functionality of this new function is also very

straightforward: it loops through an area defined by the

x, y, w and h parameters, and sets each pixel to the passed

color. This makes it very easy to fill specific areas of the

screen with specific colors.

3) GLCD Modification: Proper Orientation and

Out of Bounds Handling

For the interim project update, any rendered bitmaps

had to be flipped beforehand in an image editing software

since the GLCD_Bitmap function implementation

seemed to draw images with a vertical flip. For the final

project demo, this quirk was investigated and was

determined to be a result of the way that the bitmap data

was indexed in the GLCD_Bitmap function. Instead of

indexing the bitmap data from top to bottom, the function

indexed it from bottom to top. A simple modification to

the outer for loop flipped the images back to the normal

orientation.

Another flaw of the GLCD_Bitmap function was that

it did not handle the cases where the bitmap image was

either partially or completely out of the bounds of the

screen. This caused bitmaps to either wrap around from

5

one side of the screen to the other, or to not render at all

if they were partially out of bounds. The GLCD_Bitmap

function was modified to be able to resolve such cases.

Not only did this fix the aforementioned issues, but now

the program did not have to waste time and resources

attempting to draw something to the screen that would

not be visible anyway.

With the newly modified function, when a bitmap is

passed to the function and is completely out of bounds,

the function simply returns without performing any

additional work. If the bitmap is partially within bounds,

the function clips the image rendering to only cover the

pixels that are within the bounds.

As an example of such a case, Figure 5 shows a

dummy bitmap that is partially out of the rightmost

bounds of the screen. As can be seen, half of the bitmap

exists past the right edge of the screen. To handle such a

case, the GLCD_Bitmap function draws to an active

window with a width of {WIDTH – x} instead of

img_width.

Figure 5 – Diagram of a bitmap that is partially

out of bounds of the screen

In addition to the Sprite struct, Utils.h defines an

AnimatedSprite struct. This struct acts as a wrapper to a

Sprite struct, and also introduces fields that define the

animation parameters for an animated sprite. These

parameters can be found on lines 20-26 of Utils.h. These

parameters define the number of images in the animation

(to know when to wrap an incremented sprite index back

to zero), the period of the sprite updates (in

milliseconds), and the tick timestamp of the last image

transition (to know how long to wait until the next

transition).

D. MenuGUI

The core functionality of the menu rendering and

selection changing is encapsulated in a MenuGUI

module. This reduces code clutter in main.c and allows

for easier debugging. The MenuGUI module defines the

entry, update and input handlers for the main menu state.

The entry handler is called MenuGUI_Init. This handler

function initializes the sprites used for rendering the

background icons of the menu. The MenuGUI_Update

function acts as the update handler of the menu state. Any

state update handler is called with a 50ms period.

However, the menu only needs updating if the menu

selection changed. To minimize screen flicker and save

on program resources, the MenuGUI module defines two

substates–one where updates are required, and one where

they are not. This is done through the use of a

needs_update variable. If the variable is set to true, that

means that the state of the menu changed and must be

visually updated. If the variable is false, that means that

there were no updates since the last update handler call,

and therefore nothing should be done by the update

handler. The update handler checks the status of the

needs_update variable at the beginning of the function,

and if it is false, the function returns without doing any

work. If the variable is true, however, the update handler

redraws the menu scene. It does this by first drawing the

menu background. Then, it loops through all of the icons

that need drawing and draws them. First, it checks if the

current icon in the loop is the selected icon. If it’s not, it

simply draws the icon and moves on to the next icon. If

the current icon is the selected one, it first draws a blue

background behind the sprite to show that it is the

selected icon.

The MenuGUI input handler updates the current

selection in response to joystick presses. Although the

input handler has the function signature of a valid

InputHandler function, this function is not used as the

main menu state input handler callback. This is because

it being within the MenuGUI module, the

MenuGUI_Input function cannot properly respond to the

select action of the joystick. This is because the core

FSM parameters exist in the scope of main.c and are not

exposed to the MenuGUI module. Therefore, no function

within the MenuGUI module could update the FSM state

variables in response to an item selection event. While it

would be possible to extern the FSM state variables and

have access to them from the MEnuGUI module, this

defeats the whole concept of encapsulation of the menu’s

GUI functionality. Overall, it makes for cleaner code to

handle application-specific FSM transitions in the scope

of main.c. The way that the input handling works then, is

that there is a menu input handler in main.c that handles

the select press of the joystick, and forwards all other

joystick actions to the MenuGUI module.

6

E. Image Gallery

The image gallery supports a variable number of

images, and can also handle a mix of both animated and

static images. To achieve this invariance to image type,

a new structure called ImageContainer was defined to

provide image type metadata. This struct had to be

created since static images are implemented using Sprite,

and animated images using AnimatedSprite. Since this

project is programmed in C and not C++, there is no true

object-oriented functionality built into the language.

Therefore, there cannot be a base object type that can be

either a Sprite or AnimatedSprite, without performing

void pointer voodoo magic (which is slightly outside of

the scope of the project). To get around this inherent

limitation of the programming language, the new

ImageContainer struct must be used. This struct is

nothing more than another wrapper around an

AnimatedSprite struct, that leverages the fact that an

AnimatedSprite contains a Sprite within it. This new

struct simply adds an is_animated field that defines the

type of image that this container stores. If is_animated is

true, that means that the AnimatedSprite object can be

used to its full capabilities as an AnimatedSprite.

However, if is_animated is false, that means that only the

Sprite object within the AnimatedSprite is fully defined,

and that the animation-related parameters of

AnimatedSprite cannot be trusted to be accurately

initialized. These two simple assumptions, defined

through a single variable, allow the ImageContainer

struct to be versatile and cover both image types.

The gallery update handler logic is covered in a

flowchart that can be found in Figure 13 (Appendix I).

In summary, the update handler performs three main

functions: wipes the previous sprite area on image

transition, updates the frames of an animated image with

the period defined by the AnimatedSprite object, and

draws either a frame of the animated image, or draws a

static image if there is no animation.

F. MP3 Player

The MP3 player state is the simplest state of the project

and really only handles the muting and unmuting of the

DAC audio output. A Mute variable is already available

in the USBAudio code, and is externed in main.c. In the

entry handler, Mute is set to FALSE, and in the exit

handler, Mute is set to TRUE. The update handler is

defined for this state, but is empty as there is no need for

it. The entry handler also clears the GLCD and prints a

simple header that labels the new page as an MP3 Player.

G. Flappy Bird

The Flappy Bird game is completely packaged in a

separate module (i.e. separate header and source file) to,

once again, make the code easier to develop and

understand. The game is exposed to the main project

through three functions: FB_Init, FB_Update, and

FB_Input_Jump. The FB_Init function is called from the

game state entry handler (which is a function in main.c).

This initialization function sets up the game to a clean

reset state, and puts the game in a state where it waits for

user input to start playing. To achieve the latter part, the

FB module defines two substates:

GAME_STATE_WAITING (GSW) and

GAME_STATE_PLAYING (GSP). In the GSW

substate, the update handler returns without doing any

work, and the game is in a paused state until the up key

is pressed on the joystick.

1) Update Types

When in the GSP substate, the game is running and is

actively updating using the update handler. In the update

handler, there are three types of updates that occur at

their own configurable rates: map update, bird update,

and bird flap animation update. All three update types

have their own tick timing variables used for calculating

when their periods have expired and an update is

required. The detailed and commented implementation

can be found in FlappyBird.c (Appendix II). Due to the

fact that the update handler has access to the system tick

value means that all timing can remain consistent, even

under thread timing changes, or even system clock

changes. This is a very crucial principle of the overall

system architecture and allows for the successful

decoupling of all sub-modules from the overall RTX

implementation.

2) Map Scrolling Update: Game Environment and

Random Map Generation

The map update occurs with a period of 60ms. During

each map update, the position of all active walls is moved

5 pixels (px) to the left. Moving the walls to the left

provides the illusion that the player is flying left. Each

update cycle, all of the walls are checked to see if they

have finished their lifecycle. A wall finishes its cycle

once it’s past the leftmost bound of the screen and is

completely out of view. When this happens, the wall is

regenerated at the rightmost side of the screen, just out of

view. This provides the illusion that there is an endless

stream of walls, while only really keeping track of two

active walls at a time. The map update event also checks

7

to see if the bird has successfully crossed any of the

active walls. All walls have a parameter called passed,

which is false if it is ahead of the bird, and true if the bird

already passed it and the wall is behind the player sprite.

The map update checks to see if there are any walls that

are fully behind the player sprite. If they are and have not

been marked as passed yet, that means that they have

been passed recently. When this occurs, the player score

is incremented and the wall is marked as passed, so as to

prevent it from incrementing the player score multiple

times. If a wall has been passed and has been marked as

such, it is ignored for score updates.

When a wall goes out of bounds and becomes inactive,

it requires regeneration. When it is regenerated, the

position of the gap between the top and bottom pipe is

randomized. The gap has a minimum and maximum

height to prevent it from being all the way near the

ceiling or the floor. The gap also has a variable size that

changes after a set number of passed walls to increase

game complexity. The gap size variable starts out at a

comfortable maximum to help new players get into the

game. After every 5 successfully passed walls, the gap

size decreases by 5px. This keeps happening until the gap

size reaches a predefined minimum value. At this

minimum, it is still possible to pass through the gap,

although it is much more difficult.

The random location of the gap is generated with the

help of the rand() function found in <stdlib.h>. The

random generation code can be found in the

FlappyBird.c source, on lines 123-133.

3) Bird Update: Kinematics and Collision

Detection

The bird update occurs with a period of 40ms. At each

40ms time step, the velocity of the bird is updated based

on the delta time and the gravity value. The vertical y

position of the bird is then updated based on the new bird

velocity and, once again, the delta time step. This type of

position modeling is pure physics kinematics and leads

to a somewhat realistic feel of gravity. There are slight

errors that could be felt during gameplay, but this is due

to the fact that there are very few vertical pixels (240px),

which leads to quantization errors. Under low velocity

conditions. If there were more pixels, then the screen

would have a greater resolution that would be able to

show these low velocities.

2 The coordinate system of the screen starts at the top-left corner, with

increasing x going right, and increasing y going down.

The bird update event also checks to see if, after the

bird position was updated, the bird is now colliding with

any of the walls or the floor. The ceiling was left open,

and the user was allowed to go out of bounds that way.

Doing so did not break the game, since the user would

collide with the very top of the wall; it stretches infinitely

up beyond the screen. However, hitting the floor would

lead to the game being over. Checking for this collision

was very simple. For the purposes of collision detection,

the bird sprite can be thought of as a bounding box,

defined by the x and y coordinates, as well as the sprite

width and height. Figure 6 visually demonstrates this

bounding box (BB). Note that in the figure, w means

width and h means height. The bird colliding with the

ground means that the bottom edge of the BB has a

greater2 y value than the floor. When this condition is

true, a collision with the ground is detected and the game

is reset.

Figure 6 – Bird sprite bounding box

Collision detection with the walls is slightly more

involved than the trivial case of floor collision, yet it is

still straightforward. During the bird update, all active

walls are looped over and are tested for a collision

between the bird and the respective wall. At first, the

collision detection code tests if the bird sprite overlaps

the general vertical strip of the wall, without even

considering the gap. The condition rules out cases where

the bird sprite is completely on the left or right of the

given wall. This happens when either both x and x+w are

less than the wall x, or when both x and x+w are greater

than the wall x + wall width. If this test fails, then there

is no risk of collision, so the more specific condition can

be skipped. If, however, the bird is within the bounds of

the wall, then it must be checked if the bird is within the

8

passable gap, or actually colliding with either the top or

bottom pipe. This next step is done by checking for the

vertical position of the bird sprite. Considering the

problem from a higher-level, there no collision if the top

and bottom edges of the bird BB are within the passable

gap BB. Therefore, it is sufficient to check if either the

top edge of the bird BB is above the top edge of the gap,

or if the bottom edge of the bird BB is below the gap

bottom edge. If this condition is true, then a collision is

detected and the game is reset.

4) Animations and Efficient Sprite Drawing

The sprite used for the bird is actually not a static

image, but an animated sprite consisting of three images.

The bird flapping animation is updated every 200ms,

leading to a 5 frame per second animation.

The Flappy Bird game has many moving sprites that

are updates several times per second. When a sprite

changes locations on the screen, its old pixels must be

cleaned so as to not leave a continuous trail. The naïve

approach is to simply clear the whole screen and redraw

the scene. However, clearing the whole GLCD incurs

severe time penalties which are very visible to the user.

Doing a screen clear several times per second would

cause the whole system to lag significantly.

Instead the screen has to be selectively filled where

necessary. For a sprite such as the bird, which has a

variable velocity at each time step, it is easier to fill in

the old sprite area with the background color to wipe the

old sprite, and then to redraw the sprite in the new

location. This method leads to some slight visual artifacts

when the bird is moving quickly, but these minimal

glitches are tolerable. This method works for the bird

because the sprite bitmap is relatively small. However,

this method cannot be used for the moving pipes. The

pipes are large vertical sprites that span almost the

complete height of the page. When the simpler method

of clearing the whole sprite area and then redrawing in

the new position is used, there is a noticeable lag in the

game that degrades performance. In fact, the whole game

noticeably slows down when this method is used.

There is a very easy workaround though for the pipe

sprite updating. Luckily, the pipes move with a steady

velocity of 5 pixels per time step. That means that the

delta distance between the old and new sprite locations is

a constant. Therefore, simple helper functions were made

to only clear the delta area between the old and new pipe

sprite locations. This significantly improved the

performance of the game.

It should be noted that the concept of cleaning or

clearing the old sprite is nothing more than filling the

region of the sprite (or the delta region in the case of the

pipes) with the background color. This effectively erases

any sprites in the defined region.

5) Input Handling

The only input to the game is the pressing up with the

joystick. When the game is in the SGW substate, pressing

up will start the game. When the game is in the SGP

susbstate, pressing up causes the bird to jump up with a

set velocity. Like in other system states, pressing left on

the joystick takes the user back to the main menu state.

Since high level state switching is handled within the

context of main.c, the FB module cannot respond to such

inputs. Therefore, the actual input handler callback

function exist in main.c. If the game input handler

receives a left joystick press, it switches the FSM state to

the main menu. If the input is instead a joystick up event,

the input handler calls the FB_Input_Jump function to

notify the FB module that the user triggered a jump/start

game action. All other inputs are ignored.

V. EXPERIMENTAL RESULTS

The various requirements of the project were met with

high code efficiency, due to a very expandable and

debuggable high-level architecture. Defining all required

sections as discrete states of an FSM, with each state

having substate as needed allowed for the code base to

be easily scalable. This made the development process

simple, with endless possibilities limited only by

processor speed and working memory constraints. Also,

as the core scheduling of the project was defined using

the RTX kernel, the timing of each state function could

be accurately controlled. Furthermore, the design choice

of relying on a tick parameter passed to all update

handlers, instead of hard-coding and assuming that each

time step is strictly dictated by the virtual timer

configuration of each thread made fine-tuning of the

project very easy. Initially, the update and input handler

thread timings were not ideal and caused either the input

to be unresponsive, or the game to lag significantly. The

virtual timer parameters had to be adjusted until the

system worked nicely. If the update handlers did not have

access to the tick value, then all of the update handlers

that had any sort of time-dependent calculations would

have to be modified to reflect the new timing. Instead,

the update handlers remained the same, despite the thread

timings changing.

Initially, there was an additional thread called

led_update that animate the LEDs to be a visual heartbeat

indicator. This provided valuable insight into how the

9

program was managing in each function, as the LED

animation would noticeably lag if the thread timing was

reaching full utilization. There were also issues initially

with the program not being responsive in certain states.

The LED strip helped debug that issue as being a thread

priority problem. This thread was later removed as it was

no longer needed and would only act as overhead for the

increasingly complex game and image gallery states. The

modular nature of the overall system made it very easy

to remove this thread.

A. Menu State

The menu state is the initial state of the system, and is

the first one that the user sees. This state is responsible

for the navigation to all other states. Here, the user can

find the familiar comfort of the Windows XP desktop

background image, with Windows XP-style icons

leading to all of the other states. The icons are displayed

in a single row, with a total of three icons (one per state,

not including the menu state). Pressing either left or right

with the joystick changes the current icon selection.

Pressing select on the joystick transitions the FSM state

to the highlighted icon’s state. Figure 7 shows the main

menu screen, as it would be seen by the user.

Figure 7 – Main menu screen, with the second

item highlighted

B. Image Gallery State

The image gallery is a state where the user can view

multiple images by cycling through them with the

joystick. The gallery supports both static and animated

images. For the demo, there are two static and one

animated images: Windows XP background, Ryerson

Formula Racing logo, and an animated stickman dancing

back and forth. The user navigates through each picture

by pressing the up or down joystick buttons, and pressing

left to leave the gallery and return to the main menu. The

gallery is also styled as a Windows XP explorer window,

to maintain the overall retro theme of the project. An

example of an image being displayed in the gallery can

be found in Figure 8.

Figure 8 – The image gallery, with an example

image being shown

C. MP3 Player State

The MP3 player state is the simplest state. The only

function of this state is to mute and unmute the audio

output of the board. This is performed by state entry and

exit handlers; the entry handler unmutes the sound, and

the exit handler mutes it. Another function of the entry

handler is to clear the display screen and to print a header,

identifying the state as the MP3 player state.

D. Game state

The game state is the most interactive state, and

provides gameplay to the user. The game implemented

in this project is Flappy Bird–a retro-style side scroller

created by Dong Nguyen, commonly known for its

seemingly overnight rise to fame in 2014 [4]. The game

consists of a pixelated bird, controlled by the user, trying

to avoid obstacles in the form of pipes spanning from the

top and bottom of the screen. An example of what the

game looks like can be found in Figure 9. The bird is

constantly falling due to gravity, so the user must provide

it with an upward boost at the correct time to keep the

bird from hitting either the pipes or the ground. The

upward and downward pipes have a gap between them

that the user must aim for. In this implementation of the

game, the gap between the pipes narrows after every fifth

successful crossing. The gap keeps decreasing until it

reaches the minimum allowed gap. This is done to ensure

that even on the hardest level, the game is still playable.

When the user first enters the game state, they are

prompted to press up on the joystick to begin the game.

The user then presses up to give the bird a boost. Once

the user collides with either pipe or the ground, the game

is over. The game is then stopped, and the user is once

again prompted to press up on the joystick, which restarts

the gameplay. Prompting the user for an explicit action

in order to start the gameplay allows the user to get ready

and not be caught off-guard when the game starts. This

prevents the user from getting angry with the game. As

10

much as possible must be done to keep the user happy,

as Flappy Bird is fundamentally a very annoying game

to play.

Figure 9 – The Flappy Bird game

E. USB Audio Playback

Another feature that must be mentioned is the USB

audio playback. The implementation of the audio

playback is almost entirely identical to the USBAudio

example code. The main changes done to the example

code were minor fixes to some LPC17xx system function

references, as the example code is possibly intended for

an older version of LPC17xx standard library. The

main() function of the USBAudio project was also

changed to USBAudio_Init(), so that it could be called

from the actual main() function of the project to initialize

USB audio functionality.

Strangely enough, there was a critical issue with the

example code that initially prevented it from running in

conjunction with the RTX kernel. When the USBAudio

code was first integrated into the Work In Progress (WIP)

project that implemented thread scheduling using RTX,

none of the threads would work. Multiple debugging

steps were taken to try and isolate the problem. At first,

breakpoints were set at various point in the main()

function, and in each thread. It was observed that none of

the breakpoints were hit in the RTX threads. The

problem was isolated to occur only after USBAudio

initialization. After further attempts to isolate the root

cause of the issue through commenting out different

initialization code sections, the problem was further

isolated to only happen after a call to USB_Init().

Through rigorous investigation of the example code,

and possible solutions online on the Keil forums, the

problem was identified to be caused by a bug in the USB

interrupt handler. The USB_IRQHandler interrupt

handler handles all USB interrupts. This means that when

the the function is called, it must conditionally process

all possible interrupt sources by checking which specific

interrupt flag is set. Once it processes a specific interrupt,

it clears its respective interrupt flag to signify that it

handled the interrupt. This was done correctly for all

interrupt sources, except the FRAME_INT interrupt. The

interrupt handler was never programmed to clear the

FRAME_INT flag once it finished processing the

interrupt. Due to this oversight in the code, the interrupt

was continuously reprocessed. Since an interrupt has a

higher priority than any RTX thread, just by the nature of

being an interrupt, none of the threads were called as they

were always blocked. Clearing the flag in the interrupt

handler fixed this issue.

VI. CONCLUSIONS

Despite the many hardship and tribulations faced in the

journey on completing this project, it was implemented

successfully. In fact, the end result turned out better than

expected. Not only was there a cohesive theme to the

project that tied all of the subsections together, but the

implementation of the code was clean and reusable. The

project, in its current state, could be easily extended to

include additional features with minimal overhead.

One feature that was considered to be added was a

screensaver, to fit with the retro Windows XP theme. A

logo bouncing around a black screen, such as the one

seen in a skit on the Office (US) TV show [6], would

provide much nostalgia and possibly comedic value.

Overall, such additions are simple to develop and

integrate into an existing project if the project is built on

a properly designed codebase. The design principles

equipped for this project allow for such expansion, and

present a frictionless framework within which the project

seamlessly debugged, maintained, and is left with a

multitude of opportunities for future expansion.

REFERENCES

[1] J. Ganssle, "The shape of the MCU

market", Embedded, 2018. [Online]. Available:

https://www.embedded.com/electronics-

blogs/break-points/4441588/The-shape-of-the-

MCU-market.

[2] G. Khan, Lab 2: Exploring Cortex-M3 Features for

Performance Efficiency. Ryerson University, 2018.

Available:

http://www.ee.ryerson.ca/~courses/coe718/labs/Lab

2.pdf

[3] Martin, T., "The Designer's Guide to the Cortex-M

Processor Family", Elsevier Ltd, 2013.

11

[4] K. Bell, "The Man Behind 'Helicopter Game,' the

Original 'Flappy Bird'", Mashable, 2018. [Online].

Available: https://mashable.com/2014/02/09/flappy-

bird-helicopter-game/.

[5] T. Chinzei, "LPC1768 USB Device Frame

Interrupt", Onarm.com, 2014. [Online]. Available:

http://www.onarm.com/forum/59096/.

[6] The DVD Logo - The Office US", YouTube, 2018.

[Online]. Available:

https://www.youtube.com/watch?v=QOtuX0jL85Y.

12

APPENDIX I – SUPPLEMENTARY FIGURES

Figure 10 – Finite State Machine implementation details

13

Figure 11 – display_update thread logic flowchart

14

Figure 12 – kbd_handler thread logic flowchart

15

Figure 13 – Image gallery update handler

16

APPENDIX II – SOURCE CODE

main.c

/*** 1
 COE718 main.c 2
 Tal Zaitsev F2018 3
***/ 4
#include <stdio.h> 5
#include <ctype.h> 6
#include <string.h> 7
#include <stdbool.h> 8
#include "cmsis_os.h" 9
#include "RTL.H" // RTX header file 10
#include "LPC17xx.H" // LPC17xx definitions 11
#include "GLCD.h" 12
#include "LED.h" 13
#include "KBD.h" 14
#include "Utils.h" 15
#include "USBAudio/type.h" 16
#include "FlappyBird.h" 17
#include "MenuGUI.h" 18
 19
 20
#define __FI 1 /* Font index 16x24 */ 21
#define __USE_LCD 0 /* Uncomment to use the LCD */ 22
 23
/*### 24
 Bitmap/image gallery viewer definitions 25
##*/ 26
#define GALLERY_NUM_IMGS 3 27
 28
 29
extern unsigned char BORDER_TOP_pixel_data[]; 30
extern unsigned char GALLERY_NAV_pixel_data[]; 31
extern unsigned char IMG_1_pixel_data[]; 32
extern unsigned char IMG_2_pixel_data[]; 33
extern unsigned char IMG_3_pixel_data[]; 34
 35
typedef struct { 36
 AnimatedSprite image; 37
 int is_animated; // if 0, then will only use the Sprite struct in the AnimatedSprite struct 38
} ImageContainer; 39
 40
/*### 41
 Global variables 42
##*/ 43
char buf[20]; 44
 45
// for kd handling 46
int kbd_val = 0, kbd_lck = 0; 47
 48
// for the LED thread 49
int dir = 1; 50
unsigned long leds = 2; 51
 52
// for gallery 53
ImageContainer images[GALLERY_NUM_IMGS]; 54
int curr_image = 0, prev_image = -1; 55
 56
/*### 57
 USBAudio variables and functions 58
##*/ 59
extern int USBAudio_Init(void); 60
extern uint8_t Mute; 61
 62

xxxxxxxxx

17

/*### 63
 State machine definitions 64
##*/ 65
#define STATE_MENU 0 66
#define STATE_GALLERY 1 67
#define STATE_MP3_PLAYER 2 68
#define STATE_GAME 3 69
#define STATES_TOTAL 4 70
 71
typedef void (*TransitionHandler)(void); 72
typedef void (*UpdateHandler)(uint32_t ticks); 73
typedef void (*Input)(uint32_t key); 74
 75
typedef struct { 76
 TransitionHandler enter, exit; 77
 UpdateHandler update; 78
 Input input; 79
} StateDef; 80
 81
StateDef states[STATES_TOTAL]; 82
 83
// common variables 84
int curr_state = STATE_MENU; 85
int prev_state = -1; 86
 87
 88
void gallery_enter() { 89
 GLCD_Clear(White); 90
 GLCD_SetBackColor(Blue); 91
 GLCD_SetTextColor(Yellow); 92
 //GLCD_DisplayString(0, 0, __FI, " 2 LEGS, 2 ARMS "); 93
 //GLCD_DisplayString(1, 0, __FI, " 1 DREAM "); 94
 GLCD_Bitmap(0, 0, 320, 48, BORDER_TOP_pixel_data); 95
 GLCD_Bitmap(0, 80, 81, 53, GALLERY_NAV_pixel_data); 96
} 97
 98
void gallery_handler(uint32_t ticks) { 99
 if(prev_image != curr_image) { 100
 clean_sprite_area(&images[prev_image].image.sprite, White); 101
 prev_image = curr_image; 102
 } 103
 if(images[curr_image].is_animated) { 104
 if(ticks - images[curr_image].image.last_update >= 105

osKernelSysTickMicroSec(10000*images[curr_image].image.update_msec)) { 106
 images[curr_image].image.last_update = ticks; 107
 if(++images[curr_image].image.sprite.index > images[curr_image].image.num_imgs - 1) 108

images[curr_image].image.sprite.index = 0; 109
 } 110
 } 111
 draw_sprite(&images[curr_image].image.sprite); 112
} 113
 114
void mp3_player_enter() { 115
 GLCD_Clear(White); 116
 GLCD_SetBackColor(Blue); 117
 GLCD_SetTextColor(Yellow); 118
 GLCD_DisplayString(0, 0, __FI, " MP3 Player "); 119
 Mute = FALSE; 120
} 121
 122
void mp3_player_handler(uint32_t ticks) { 123
 // TODO: add mp3 handling, if necessary 124
} 125
 126
void mp3_player_exit() { 127
 Mute = TRUE; 128
} 129

18

 130
void game_enter() { 131
 GLCD_Clear(White); 132
 GLCD_SetBackColor(Blue); 133
 GLCD_SetTextColor(Yellow); 134
 GLCD_DisplayString(4, 0, __FI, " Press ^ to start "); 135
 FB_Init(); 136
} 137
 138
void game_handler(uint32_t ticks) { 139
 // Update the game by passing the current tick value 140
 FB_Update(ticks); 141
} 142
 143
// main menu input handler 144
void menu_input(uint32_t key) { 145
 if(key == KBD_SELECT) { 146
 // change state to selected item 147
 curr_state = menu_select + 1; 148
 } else { 149
 // let the GUI library handle item switches, etc. 150
 MenuGUI_Input(key); 151
 } 152
} 153
 154
// gallery page input handler 155
// up/down presses change image, left moves back to main menu 156
void gallery_input(uint32_t key) { 157
 switch(key) { 158
 case KBD_LEFT: 159
 curr_state = STATE_MENU; 160
 break; 161
 case KBD_UP: 162
 if(--curr_image < 0) curr_image = GALLERY_NUM_IMGS - 1; 163
 break; 164
 case KBD_DOWN: 165
 if(++curr_image > GALLERY_NUM_IMGS - 1) curr_image = 0; 166
 break; 167
 } 168
} 169
 170
// simple input handler, used for pages that don't use input, 171
// but need to handle left joystick press to go back to main menu 172
void simple_input(uint32_t key) { 173
 switch(key) { 174
 case KBD_LEFT: 175
 curr_state = STATE_MENU; 176
 break; 177
 } 178
} 179
 180
// the game input handler 181
// handles left press to go back to menu, 182
// and performs jump action on up arrow press 183
void game_input(uint32_t key) { 184
 switch(key) { 185
 case KBD_LEFT: 186
 curr_state = STATE_MENU; 187
 break; 188
 case KBD_UP: 189
 FB_Input_Jump(); 190
 break; 191
 } 192
} 193
 194
/*### 195
 Thread declarations and priority configurations 196

19

##*/ 197
void kbd_handler (void const *argument); 198
void display_update (void const *argument); 199
 200
// thread definitions 201
osThreadDef(kbd_handler, osPriorityAboveNormal, 1, 0); 202
osThreadDef(display_update, osPriorityNormal, 1, 0); 203
 204
osThreadId kbd_handler_ID; 205
osThreadId display_update_ID; 206
osThreadId t_main_ID; 207
 208
 209
/*### 210
 Virtual Timer declaration and call back method 211
##*/ 212
void timer_callback(void const *param) { 213
 switch((uint32_t) param){ 214
 case 0: // kbd_handler 215
 osSignalSet(kbd_handler_ID, 0x01); 216
 break; 217
 case 1: // display_update 218
 osSignalSet(display_update_ID, 0x02); 219
 break; 220
 } 221
} 222
 223
osTimerDef(kbd_timer_handle, timer_callback); 224
osTimerDef(img_timer_handle, timer_callback); 225
 226
 227
/*### 228
 Thread definitions 229
##*/ 230
void kbd_handler(void const *argument) { 231
 for(;;) { 232
 osSignalWait(0x01, osWaitForever); 233
 kbd_val = KBD_get(); 234
 // If some KBD key is pressed 235
 if(kbd_val != KBD_MASK) { 236
 if(!kbd_lck) { 237
 kbd_lck = TRUE; 238
 // If a button is pressed, the corresponding bit is '0' otherwise it's '1' 239
 // Therefore, if none are pressed, kbd_val == KBD_MASK, and pressing a button 240
 // subtracts that button's bit mask from KBD_MASK. So, send KBD_MASK - kbd_val 241
 states[curr_state].input(KBD_MASK - kbd_val); 242
 } 243
 } else { 244
 kbd_lck = FALSE; 245
 } 246
 } 247
} 248
 249
void display_update(void const *argument) { 250
 for(;;) { 251
 osSignalWait(0x02, osWaitForever); 252
 if(curr_state != prev_state) { 253
 if(states[prev_state].exit != NULL) { 254
 states[prev_state].exit(); 255
 } 256
 states[curr_state].enter(); 257
 prev_state = curr_state; 258
 } 259
 260
 states[curr_state].update(osKernelSysTick()); 261
 } 262
} 263

20

 264
/*### 265
 Main function 266
##*/ 267
int main (void) { 268
 //Virtual timer create and start 269
 osTimerId kbd_timer = osTimerCreate(osTimer(kbd_timer_handle), osTimerPeriodic, (void *)0); 270
 osTimerId img_timer = osTimerCreate(osTimer(img_timer_handle), osTimerPeriodic, (void *)1); 271
 272
 SystemInit(); // initialize the Coretx-M3 processor 273
 LED_Init(); 274
 KBD_Init(); 275
 Mute = TRUE; 276
 USBAudio_Init(); 277
 278
#ifdef __USE_LCD 279
 GLCD_Init(); /* Initialize graphical LCD (if enabled */ 280
 GLCD_Clear(White); /* Clear graphical LCD display */ 281
#endif 282
 283
 // define all states 284
 states[STATE_MENU].enter = MenuGUI_Init; 285
 states[STATE_MENU].update = MenuGUI_Update; 286
 states[STATE_MENU].exit = NULL; 287
 states[STATE_MENU].input = menu_input; 288
 289
 290
 states[STATE_GALLERY].enter = gallery_enter; 291
 states[STATE_GALLERY].update = gallery_handler; 292
 states[STATE_GALLERY].exit = NULL; 293
 states[STATE_GALLERY].input = gallery_input; 294
 295
 states[STATE_MP3_PLAYER].enter = mp3_player_enter; 296
 states[STATE_MP3_PLAYER].update = mp3_player_handler; 297
 states[STATE_MP3_PLAYER].exit = mp3_player_exit; 298
 states[STATE_MP3_PLAYER].input = simple_input; 299
 300
 states[STATE_GAME].enter = game_enter; 301
 states[STATE_GAME].update = game_handler; 302
 states[STATE_GAME].exit = NULL; 303
 states[STATE_GAME].input = game_input; 304
 305
 306
 images[0].image.sprite.x = 86; 307
 images[0].image.sprite.y = 58; 308
 images[0].image.sprite.width = 229; 309
 images[0].image.sprite.height = 172; 310
 images[0].image.sprite.ptr = IMG_1_pixel_data; 311
 images[0].image.sprite.index = 0; 312
 images[0].is_animated = FALSE; 313
 314
 images[1].image.sprite.x = 86; 315
 images[1].image.sprite.y = 58; 316
 images[1].image.sprite.width = 229; 317
 images[1].image.sprite.height = 172; 318
 images[1].image.sprite.ptr = IMG_2_pixel_data; 319
 images[1].image.sprite.index = 0; 320
 images[1].is_animated = FALSE; 321
 322
 images[2].image.sprite.x = 150; 323
 images[2].image.sprite.y = 60; 324
 images[2].image.sprite.width = 92; 325
 images[2].image.sprite.height = 150; 326
 images[2].image.sprite.ptr = IMG_3_pixel_data; 327
 images[2].image.sprite.index = 0; 328
 images[2].image.num_imgs = 2; 329
 images[2].image.last_update = 0; 330

21

 images[2].image.update_msec = 200; // 5 fps 331
 images[2].is_animated = TRUE; 332
 333
 334
 // set main thread priority to high so that none of the threads it creates will pre-empt it 335

during init 336
 t_main_ID = osThreadGetId(); 337
 osThreadSetPriority(t_main_ID, osPriorityHigh); 338
 339
 // start the timers 340
 osTimerStart(kbd_timer, 200); // 20ms 341
 osTimerStart(img_timer, 50); // 5ms 342
 343
 //Signal and wait threads 344
 kbd_handler_ID = osThreadCreate(osThread(kbd_handler), NULL); 345
 display_update_ID = osThreadCreate(osThread(display_update), NULL); 346
 347
 // delete the main thread so that it does not interfere with scheduling 348
 osThreadTerminate(t_main_ID); 349
 for (;;); 350
} 351
 352
 353

Utils.h

/**/ 1
/* Utils.h: Utility functions and defintions */ 2
/**/ 3
/* Created by Tal Zaitsev, 2018 */ 4
/**/ 5
 6
 7
#ifndef _UTILS_H 8
#define _UTILS_H 9
#include "LPC17xx.H" /* LPC17xx definitions */ 10
 11
// sprite struct that packs the sprite bitmap info with descriptive info 12
typedef struct { 13
 int x, y; // x and y coordinates of the image on the GLCD 14
 int width, height; // width and height of a bitmap image 15
 unsigned char *ptr; // pointer to the bitmap array 16
 int index; // index of image in a bitmap array, for bitmaps with multiple images 17
} Sprite; 18
 19
// sprite wrapper that can supports easy timed bitmap image transitions 20
typedef struct { 21
 Sprite sprite; // the sprite container 22
 int num_imgs; // # of images in the animation 23
 uint32_t last_update; // # of ticks at last sprite update 24
 int update_msec; // # of milliseconds between image updates 25
} AnimatedSprite; 26
 27
// draws a sprite on the screen, based on the info in the struct 28
void draw_sprite(Sprite *sprite); 29
// draws a sprite, but skips pixels that have a value of alpha_color (defined in utils.c) 30
void draw_sprite_alpha(Sprite *sprite); 31
// fills the area of the screen that the sprite takes up with the passed color 32
void clean_sprite_area(Sprite *sprite, unsigned short color); 33
 34
#endif 35
 36

22

Utils.c

/* Utils.c - Tal Zaitsev, F2018 */ 1
 2
#include "LPC17xx.H" /* LPC17xx definitions */ 3
#include "Utils.h" 4
#include "GLCD.h" 5
 6
// the color that will be considered as transparancy in the bitmap 7
unsigned short alpha_color = Magenta; 8
 9
// draws a sprite on the screen, based on the info in the struct 10
void draw_sprite(Sprite *sprite) { 11
 GLCD_Bitmap(sprite->x, sprite->y, sprite->width, sprite->height, 12
 sprite->ptr + sprite->index*(sprite->width*sprite->height*2)); 13
} 14
 15
// draws a sprite, but skips pixels that have a value of alpha_color 16
void draw_sprite_alpha(Sprite *sprite) { 17
 GLCD_BitmapAlpha(sprite->x, sprite->y, sprite->width, sprite->height, 18
 sprite->ptr + sprite->index*(sprite->width*sprite->height*2), alpha_color); 19
} 20
 21
// fills the area of the screen that the sprite takes up with the passed color 22
void clean_sprite_area(Sprite *sprite, unsigned short color) { 23
 GLCD_Fill(sprite->x, sprite->y, sprite->width, sprite->height, color); 24
} 25
 26

GLCD_SPI_LPC1700.c (modified part only)

/*** 1
* Display graphical bitmap image at position x horizontally and y vertically * 2
* (This function is optimized for 16 bits per pixel format, it has to be * 3
* adapted for any other bits per pixel format) * 4
* Parameter: x: horizontal position * 5
* y: vertical position * 6
* w: width of bitmap * 7
* h: height of bitmap * 8
* bitmap: address at which the bitmap data resides * 9
* Return: * 10
* Modified by Tal Zaitsev, 2018 * 11
* Modified to properly draw (or not draw!) bitmaps which are partially or * 12
* completely out of bounds of the display pixels. Also, pixel draw direction * 13
* was changed to draw images the right way up (they had to be flipped before)* 14
***/ 15
 16
void GLCD_Bitmap (int x, int y, unsigned int w, unsigned int h, unsigned char *bitmap) { 17
 int i, j; 18
 int startx = 0, endx = w; 19
 unsigned short *bitmap_ptr = (unsigned short *)bitmap; 20
 21
 if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) { 22
 return; 23
 } 24
 25
 if((x + w) > WIDTH) { // x overflow 26
 startx = 0; 27
 endx = WIDTH - x; 28
 } else if(x < 0) { // x underflow 29
 startx = -x; 30
 endx = w; 31
 x = 0; // for GLCD_SetWindow 32
 } 33
 34
 GLCD_SetWindow (x, y, endx - startx, h); 35

23

 36
 37
 wr_cmd(0x22); 38
 wr_dat_start(); 39
 for (i = 0; i < h*w; i += w) { 40
 for (j = startx; j < endx; j++) { 41
 wr_dat_only (bitmap_ptr[i+j]); 42
 } 43
 } 44
 wr_dat_stop(); 45
} 46
 47
 48
/*** 49
* Display graphical bitmap image at position x horizontally and y vertically * 50
* (This function is optimized for 16 bits per pixel format, it has to be * 51
* adapted for any other bits per pixel format) * 52
* When drawing, skips the rendering of all pixels that have the same value as * 53
* alpha_color * 54
* Parameter: x: horizontal position * 55
* y: vertical position * 56
* w: width of bitmap * 57
* h: height of bitmap * 58
* bitmap: address at which the bitmap data resides * 59
* alpha_color: color that is used for transparancy * 60
* Return: * 61
* Added by Tal Zaitsev, 2018 * 62
***/ 63
 64
void GLCD_BitmapAlpha (int x, int y, unsigned int w, unsigned int h, unsigned char *bitmap, 65

unsigned short alpha_color) { 66
 int i, j, wr_started = 0; 67
 int startx = 0, endx = w; 68
 unsigned short *bitmap_ptr = (unsigned short *)bitmap; 69
 70
 if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) { 71
 return; 72
 } 73
 74
 if((x + w) > WIDTH) { // x overflow 75
 startx = 0; 76
 endx = WIDTH - x; 77
 } else if(x < 0) { // x underflow 78
 startx = -x; 79
 endx = w; 80
 x = 0; // for GLCD_SetWindow 81
 } 82
 83
 GLCD_SetWindow (x, y, endx - startx, h); 84
 85
 86
 wr_cmd(0x22); 87
 wr_dat_start(); 88
 wr_started = 1; 89
 for (i = 0; i < h*w; i += w) { 90
 for (j = startx; j < endx; j++) { 91
 if(bitmap_ptr[i+j] != alpha_color) { 92
 if(wr_started == 0) { 93
 wr_dat_start(); 94
 wr_started = 1; 95
 } 96
 wr_dat_only (bitmap_ptr[i+j]); 97
 } else { 98
 if(wr_started == 1) { 99
 wr_dat_stop(); 100
 wr_started = 0; 101
 } 102

24

 (void) rd_dat(); 103
 } 104
 } 105
 } 106
 wr_dat_stop(); 107
} 108
 109
 110
/*** 111
* Fill region with specified color * 112
* Parameter: x: horizontal position * 113
* y: vertical position * 114
* w: width of bitmap * 115
* h: height of bitmap * 116
* color: color to fill region with * 117
* Return: * 118
* Added by Tal Zaitsev, 2018 * 119
***/ 120
 121
void GLCD_Fill (int x, int y, unsigned int w, unsigned int h, unsigned short color) { 122
 int i, j; 123
 int startx = 0, endx = w; 124
 125
 if(x >= WIDTH || x + (signed int) w < 0 || y + (signed int) h < 0) { 126
 return; 127
 } 128
 129
 if((x + w) > WIDTH) { // x overflow 130
 startx = 0; 131
 endx = WIDTH - x; 132
 } else if(x < 0) { // x underflow 133
 startx = -x; 134
 endx = w; 135
 x = 0; // for GLCD_SetWindow 136
 } 137
 138
 GLCD_SetWindow (x, y, endx - startx, h); 139
 140
 GLCD_SetWindow (x, y, w, h); 141
 142
 wr_cmd(0x22); 143
 wr_dat_start(); 144
 for (i = 0; i < h*w; i += w) { 145
 for (j = 0; j < w; j++) { 146
 wr_dat_only(color); 147
 } 148
 } 149
 wr_dat_stop(); 150
} 151

MenuGUI.h

/**/ 1
/* MenuGUI.h: Simple GUI menu for the LPC17xx */ 2
/**/ 3
/* Created by Tal Zaitsev, 2018 */ 4
/**/ 5
 6
#ifndef _MENU_GUI_H 7
#define _MENU_GUI_H 8
 9
extern int menu_select; 10
 11
// used for menu state entry 12
void MenuGUI_Init(void); 13
// used for graphical update of the menu 14
void MenuGUI_Update(uint32_t ticks); 15

25

// used for passing input data to the menu 16
void MenuGUI_Input(uint32_t key); 17
 18
#endif 19
 20

MenuGUI.c

/* MenuGUI.c - Tal Zaitsev, F2018 */ 1
 2
#include <stdlib.h> 3
#include <stdio.h> 4
#include "LPC17xx.H" /* LPC17xx definitions */ 5
#include "cmsis_os.h" 6
#include "GLCD.h" 7
#include "KBD.h" 8
#include "Utils.h" 9
#include "MenuGUI.h" 10
 11
// the x and y size of the icon images. requires icons to be square bitmaps 12
#define ICON_SIZE 35 13
// padding between first icon an lefmost side, and between all consecutive icons 14
#define ICON_PADDING 53 15
// y value of the (only) row of icons 16
#define ICON_Y 50 17
// number of menu items. For more reusable code, this would be a variable that gets set during 18

// initialization 19
#define NUM_ICONS 3 20
// padding, in pixels, between walls of highlight box and icon 21
#define SELECTION_PADDING 10 22
// color of highlight box that highlights the selected item 23
#define SELECTION_COLOR Blue 24
 25
// bitmap data for background and icons 26
extern unsigned char MENU_BACK_pixel_data[]; 27
extern unsigned char ICON_SET_pixel_data[]; 28
 29
// icon and backround sprite images 30
Sprite icons[NUM_ICONS]; 31
Sprite background; 32
 33
// menu selection index. can be anything between 0 and NUM_ICONS - 1 34
int menu_select = 0; 35
 36
// flag that prevents needless menu redraws. set only when selection changes, or at init. 37
// 1 = needs update, 0 = no need for update 38
int needs_update; 39
 40
// sets up the bitmaps for initial rendering of the menu 41
// used for initial initialization, and for entering the menu 42
// by returning from the other states 43
void MenuGUI_Init(void) { 44
 int i; 45
 // set flag so that menu is drawn the first time 46
 needs_update = 1; 47
 48
 // initialize icon sprites from the icon set 49
 for(i = 0; i < NUM_ICONS; i++) { 50
 icons[i].width = icons[i].height = ICON_SIZE; 51
 icons[i].x = ICON_PADDING + i * (ICON_SIZE + ICON_PADDING); 52
 icons[i].y = ICON_Y; 53
 icons[i].index = 0; 54
 icons[i].ptr = ICON_SET_pixel_data + i * (ICON_SIZE * ICON_SIZE * 2); 55
 } 56
 57
 // Initialize the backround image sprite 58
 background.x = background.y = 0; 59

26

 background.width = 320; 60
 background.height = 240; 61
 background.ptr = MENU_BACK_pixel_data; 62
 background.index = 0; 63
} 64
 65
void MenuGUI_Update(uint32_t ticks) { 66
 int i; 67
 if(needs_update) { 68
 // draw background first 69
 draw_sprite(&background); 70
 for(i = 0; i < NUM_ICONS; i++) { 71
 // if this icon is selected, highlight it with the selection color 72
 if(i == menu_select) { 73
 GLCD_Fill(icons[i].x - SELECTION_PADDING, icons[i].y - SELECTION_PADDING, 74
 ICON_SIZE + 2 * SELECTION_PADDING, ICON_SIZE + 2 * SELECTION_PADDING, 75
 SELECTION_COLOR); 76
 } 77
 // draw the icon overlaid on the background, or on the highlight box 78
 draw_sprite_alpha(&icons[i]); 79
 } 80
 // clear flag now that menu was updated 81
 needs_update = 0; 82
 } 83
} 84
 85
void MenuGUI_Input(uint32_t key) { 86
 switch(key) { 87
 case KBD_LEFT: 88
 // updates the selection, if it didn't reach the leftmost item yet 89
 // sets flag that menu needs update if the selection changed 90
 if(--menu_select < 0) { 91
 menu_select = 0; 92
 } else { 93
 needs_update = 1; 94
 } 95
 break; 96
 97
 case KBD_RIGHT: 98
 // updates the selection, if it didn't reach the rightmost item yet 99
 // sets flag that menu needs update if the selection changed 100
 if(++menu_select >= NUM_ICONS) { 101
 menu_select = NUM_ICONS - 1; 102
 } else { 103
 needs_update = 1; 104
 } 105
 break; 106
 } 107
} 108
 109

FlappyBird.h

/**/ 1
/* FlappyBird.h: Flappy Bird port for the LPC1768 */ 2
/**/ 3
/* Created by Tal Zaitsev, 2018 */ 4
/**/ 5
 6
#ifndef _FLAPPYBIRD_H 7
#define _FLAPPYBIRD_H 8
 9
void FB_Init(void); 10
void FB_Update(uint32_t ticks); 11
void FB_Input_Jump(void); 12
 13
#endif 14

27

FlappyBird.c

/* FlappyBird.c - Tal Zaitsev, F2018 */ 1
 2
#include <stdlib.h> 3
#include <stdio.h> 4
#include "LPC17xx.H" /* LPC17xx definitions */ 5
#include "cmsis_os.h" 6
#include "GLCD.h" 7
#include "Utils.h" 8
#include "FlappyBird.h" 9
 10
// color used for the background. Used for cleaning sprite areas 11
#define BACK_COLOR White 12
 13
#define TEXT_HEIGHT 24 14
#define VIEW_WIDTH 320 15
#define VIEW_HEIGHT (240 - TEXT_HEIGHT) // room for score text on bottom 16
 17
#define SCROLL_MSEC 60 // period of map scroll, in milliseconds 18
#define SCROLL_JUMP 5 // # of pixels to jump per scroll 19
 20
#define GRAVITY (2.3f * 9.81f) 21
#define TIME_STEP_MSEC 40 22
#define PIXELS_PER_METER 18 23
#define JUMP_VELOCITY (0.8f * GRAVITY) 24
 25
#define BIRD_WIDTH 34 26
#define BIRD_HEIGHT 24 27
#define BIRD_MAX_INDEX 2 28
#define BIRD_FLAP_MSEC 200 29
#define SPAWN_X 100 30
#define SPAWN_Y 50 31
 32
#define PIPE_WIDTH 26 33
#define PIPE_HEIGHT 160 34
 35
#define MIN_GAP_SIZE (BIRD_HEIGHT + 2 * 15) // bird height + padding on each side 36
#define MAX_GAP_SIZE (BIRD_HEIGHT + 2 * 30) // bird height + padding on each side 37
#define NUM_WALLS 2 38
#define PIPE_MIN_HEIGHT 36 39
 40
#define GAME_STATE_WAITING 0 41
#define GAME_STATE_PLAYING 1 42
 43
 44
// encapsulates both top and bottom pipe sprites, 45
// as well as collision detection info 46
typedef struct { 47
 Sprite top_pipe; 48
 Sprite bottom_pipe; 49
 int x; 50
 int gap_y; 51
 uint8_t passed; 52
} PipeWall; 53
 54
// bitmap data used for game 55
extern unsigned char TOP_PIPE_pixel_data[]; 56
extern unsigned char BOTTOM_PIPE_pixel_data[]; 57
extern unsigned char BIRD_BLUE_pixel_data[]; 58
extern unsigned char NUM_pixel_data[]; 59
 60
// used for updating each section of the game logic 61
uint32_t map_last_tick = 0; 62
uint32_t bird_last_tick = 0; 63

28

uint32_t flap_last_tick = 0; 64
 65
// bird sprite 66
Sprite bird; 67
// array of wall obstacles 68
PipeWall walls[NUM_WALLS]; 69
 70
float bird_velocity = 0; 71
// the current gap size. This is reduced every 5 walls until a limit 72
int gap_size; 73
 74
uint8_t game_state = GAME_STATE_WAITING; 75
// player score 76
uint8_t score = 0; 77
 78
// simple inline function that generates the top pipe sprite, given pipe height and x position 79
static __INLINE void gen_top_pipe(Sprite *sprite, unsigned char *bitmap, 80

int pipe_height, int x) { 81
 sprite->x = x; 82
 sprite->y = 0; 83
 sprite->width = PIPE_WIDTH; 84
 sprite->height = pipe_height; 85
 sprite->ptr = bitmap + (PIPE_HEIGHT - pipe_height)*(PIPE_WIDTH*2); 86
 sprite->index = 0; 87
} 88
 89
// simple inline function that generates the bottom pipe sprite, given pipe height and x position 90
static __INLINE void gen_bottom_pipe(Sprite *sprite, unsigned char *bitmap, 91

int pipe_height, int x) { 92
 sprite->x = x; 93
 sprite->y = VIEW_HEIGHT - pipe_height - 1; 94
 sprite->width = PIPE_WIDTH; 95
 sprite->height = pipe_height; 96
 sprite->ptr = bitmap; 97
 sprite->index = 0; 98
} 99
 100
// simple inline function that cleans the delta area between old and new wall positions 101
// this leads to performance improvement, as only a sliver of an area has to be cleaned, 102
// instead of the whole wall sprite area 103
static __INLINE void clean_sprite_pipe_area(Sprite *sprite, uint16_t color) { 104
 GLCD_Fill(sprite->x + sprite->width - SCROLL_JUMP, sprite->y, 105
 2 * SCROLL_JUMP, sprite->height, color); 106
} 107
 108
// simple inline function that checks if a given wall is out of bounds of the game 109
static __INLINE int is_wall_finished(PipeWall *wall) { 110
 return (wall->top_pipe.x + wall->top_pipe.width) < 0; 111
} 112
 113
// draws the score in the bottom left corner 114
void draw_score() { 115
 char score_str[12]; 116
 sprintf(score_str, "Score: %d", score); 117
 GLCD_SetBackColor(Yellow); 118
 GLCD_SetTextColor(Black); 119
 GLCD_DisplayString(9, 0, 1, score_str); 120
} 121
 122
void generate_wall(PipeWall *wall, int x) { 123
 // randomly generates a wall height, within the acceptable bounds 124
 wall->gap_y = PIPE_MIN_HEIGHT + (rand() % (VIEW_HEIGHT - gap_size - 2 * PIPE_MIN_HEIGHT)); 125
 126
 gen_top_pipe(&wall->top_pipe, TOP_PIPE_pixel_data, wall->gap_y, x); 127
 gen_bottom_pipe(&wall->bottom_pipe, BOTTOM_PIPE_pixel_data, 128
 VIEW_HEIGHT - wall->gap_y - gap_size, x); 129
 130

29

 wall->x = x; 131
 wall->passed = 0; // wall was just generated, therefore was not passed yet 132
} 133
 134
 135
// used for respawning and at the beginning of the game 136
void game_reset(void) { 137
 // waits for initial user input to start playing 138
 game_state = GAME_STATE_WAITING; 139
 140
 map_last_tick = bird_last_tick = flap_last_tick = 0; 141
 142
 // regenerates the first 2 initial walls 143
 generate_wall(&walls[0], VIEW_WIDTH); 144
 generate_wall(&walls[1], 1.5 * VIEW_WIDTH); 145
 146
 // sets the bird into the spawn position 147
 bird.x = SPAWN_X; 148
 bird.y = SPAWN_Y; 149
 bird.width = BIRD_WIDTH; 150
 bird.height = BIRD_HEIGHT; 151
 bird.ptr = BIRD_BLUE_pixel_data; 152
 bird.index = 0; 153
 bird_velocity = 0; 154
 155
 // resets all game specific parameters 156
 gap_size = MAX_GAP_SIZE; 157
 score = 0; 158
} 159
 160
// handles map scrolling and wall regeneration once they exit the bounds 161
// also, updates score when walls are passed 162
void map_update() { 163
 int i; 164
 for(i = 0; i < NUM_WALLS; i++) { 165
 // clean all drawn areas that need updating 166
 clean_sprite_pipe_area(&walls[i].top_pipe, BACK_COLOR); 167
 clean_sprite_pipe_area(&walls[i].bottom_pipe, BACK_COLOR); 168
 169
 // update x values 170
 walls[i].x = walls[i].bottom_pipe.x = walls[i].top_pipe.x -= SCROLL_JUMP; 171
 if(is_wall_finished(&walls[i])) { 172
 generate_wall(&walls[i], VIEW_WIDTH); 173
 } 174
 // redraw all updated sprites 175
 draw_sprite_alpha(&walls[i].top_pipe); 176
 draw_sprite_alpha(&walls[i].bottom_pipe); 177
 178
 if(!walls[i].passed && (walls[i].x + PIPE_WIDTH) < bird.x) { 179
 score++; 180
 // make gap in wall smaller every 5 walls 181
 if(score % 5 == 4) { 182
 gap_size -= 5; 183
 if(gap_size < MIN_GAP_SIZE) gap_size = MIN_GAP_SIZE; 184
 } 185
 draw_score(); 186
 walls[i].passed = 1; // count the wall as passed 187
 } 188
 } 189
} 190
 191
// handles bird update logic, like gravity and collision detection 192
void bird_update() { 193
 static int i = 0; 194
 // update velocity due to gravity 195
 bird_velocity += GRAVITY * TIME_STEP_MSEC / 1000.0f; 196
 // clean old sprite area 197

30

 clean_sprite_area(&bird, BACK_COLOR); 198
 199
 // update bird position based on velocity 200
 bird.y += PIXELS_PER_METER * bird_velocity * TIME_STEP_MSEC / 1000.0f; 201
 202
 // redraw the bird in its new position 203
 draw_sprite_alpha(&bird); 204
 205
 // Collision detection of bird with pipes and ground 206
 if(bird.y + BIRD_HEIGHT > VIEW_HEIGHT) { // hit bottom 207
 bird.y = VIEW_HEIGHT - BIRD_HEIGHT; 208
 // redraw bird at ground, and not below ground 209
 clean_sprite_area(&bird, BACK_COLOR); 210
 draw_sprite_alpha(&bird); 211
 game_reset(); 212
 return; 213
 } 214
 215
 // checks for collision with any of the walls 216
 for(i = 0; i < NUM_WALLS; i++) { 217
 // first check if bird is within bounds of the complete wall 218
 if(!((bird.x <= walls[i].x && 219
 (bird.x + BIRD_HEIGHT) <= walls[i].x) || 220
 (bird.x >= (walls[i].x + PIPE_WIDTH) && 221
 (bird.x + BIRD_WIDTH) >= (walls[i].x + PIPE_WIDTH)))) { 222
 // bird is within bounds of wall, so check y axis to see if it's in passable area 223
 if(bird.y < walls[i].gap_y || 224
 (bird.y + BIRD_HEIGHT) > (walls[i].gap_y + gap_size)) { 225
 // collision! 226
 game_reset(); 227
 return; 228
 } 229
 } 230
 } 231
} 232
 233
// initializes the Flappy Bird game 234
void FB_Init() { 235
 // reset the game to a clean playable state 236
 game_reset(); 237
 // fills in the score footer area with a background color 238
 GLCD_Fill(0, VIEW_HEIGHT, VIEW_WIDTH, TEXT_HEIGHT, Yellow); 239
} 240
 241
// update handler for the Flappy Bird game 242
void FB_Update(uint32_t ticks) { 243
 if(game_state == GAME_STATE_WAITING) { // if waiting, nothing to do 244
 return; 245
 } 246
 247
 // if map update time period reached 248
 if(ticks - map_last_tick >= osKernelSysTickMicroSec(10000*SCROLL_MSEC)) { 249
 map_update(); 250
 map_last_tick = ticks; 251
 } 252
 253
 // if bird update time period reached 254
 if(ticks - bird_last_tick >= osKernelSysTickMicroSec(10000*TIME_STEP_MSEC)) { 255
 bird_update(); 256
 bird_last_tick = ticks; 257
 } 258
 259
 // if bird flap time period reached 260
 if(ticks - flap_last_tick >= osKernelSysTickMicroSec(10000*BIRD_FLAP_MSEC)) { 261
 // simply increase the bitmap index of the bird, and reset to 0 if overflow 262
 if (++bird.index > BIRD_MAX_INDEX) bird.index = 0; 263
 flap_last_tick = ticks; 264

31

 } 265
 // for each event time handler, reset last_tick so that it can restart counting 266
} 267
 268
// if game is waiting to start, start the game 269
// otherwise, make bird jump 270
void FB_Input_Jump(void) { 271
 switch(game_state) { 272
 case GAME_STATE_WAITING: 273
 game_state = GAME_STATE_PLAYING; 274
 GLCD_Fill(0, 0, VIEW_WIDTH, VIEW_HEIGHT, BACK_COLOR); 275
 GLCD_Fill(0, VIEW_HEIGHT, VIEW_WIDTH, TEXT_HEIGHT, Yellow); 276
 break; 277
 case GAME_STATE_PLAYING: 278
 bird_velocity -= JUMP_VELOCITY; 279
 break; 280
 } 281
} 282
 283

usbhw.c (USB_IRQHandler only)

/* 1
 * USB Interrupt Service Routine 2
 */ 3
 4
void USB_IRQHandler (void) { 5
 uint32_t disr, val, n, m; 6
 uint32_t episr, episrCur; 7
 8
 disr = LPC_USB->USBDevIntSt; /* Device Interrupt Status */ 9
 10
 /* Device Status Interrupt (Reset, Connect change, Suspend/Resume) */ 11
 if (disr & DEV_STAT_INT) { 12
 LPC_USB->USBDevIntClr = DEV_STAT_INT; 13
 WrCmd(CMD_GET_DEV_STAT); 14
 val = RdCmdDat(DAT_GET_DEV_STAT); /* Device Status */ 15
 if (val & DEV_RST) { /* Reset */ 16
 USB_Reset(); 17
#if USB_RESET_EVENT 18
 USB_Reset_Event(); 19
#endif 20
 } 21
 if (val & DEV_CON_CH) { /* Connect change */ 22
#if USB_POWER_EVENT 23
 USB_Power_Event(val & DEV_CON); 24
#endif 25
 } 26
 if (val & DEV_SUS_CH) { /* Suspend/Resume */ 27
 if (val & DEV_SUS) { /* Suspend */ 28
 USB_Suspend(); 29
#if USB_SUSPEND_EVENT 30
 USB_Suspend_Event(); 31
#endif 32
 } else { /* Resume */ 33
 USB_Resume(); 34
#if USB_RESUME_EVENT 35
 USB_Resume_Event(); 36
#endif 37
 } 38
 } 39
 goto isr_end; 40
 } 41
 42
#if USB_SOF_EVENT 43
 /* Start of Frame Interrupt */ 44
 if (disr & FRAME_INT) { 45

32

 USB_SOF_Event(); 46
 LPC_USB->USBDevIntClr = FRAME_INT; // WTF.... how could this be the missing piece??? 47
 } 48
#endif 49
 50
#if USB_ERROR_EVENT 51
 /* Error Interrupt */ 52
 if (disr & ERR_INT) { 53
 WrCmd(CMD_RD_ERR_STAT); 54
 val = RdCmdDat(DAT_RD_ERR_STAT); 55
 USB_Error_Event(val); 56
 } 57
#endif 58
 59
 /* Endpoint's Slow Interrupt */ 60
 if (disr & EP_SLOW_INT) { 61
 episrCur = 0; 62
 episr = LPC_USB->USBEpIntSt; 63
 for (n = 0; n < USB_EP_NUM; n++) { /* Check All Endpoints */ 64
 if (episr == episrCur) break; /* break if all EP interrupts handled */ 65
 if (episr & (1 << n)) { 66
 episrCur |= (1 << n); 67
 m = n >> 1; 68
 69
 LPC_USB->USBEpIntClr = (1 << n); 70
 while ((LPC_USB->USBDevIntSt & CDFULL_INT) == 0); 71
 val = LPC_USB->USBCmdData; 72
 73
 if ((n & 1) == 0) { /* OUT Endpoint */ 74
 if (n == 0) { /* Control OUT Endpoint */ 75
 if (val & EP_SEL_STP) { /* Setup Packet */ 76
 if (USB_P_EP[0]) { 77
 USB_P_EP[0](USB_EVT_SETUP); 78
 continue; 79
 } 80
 } 81
 } 82
 if (USB_P_EP[m]) { 83
 USB_P_EP[m](USB_EVT_OUT); 84
 } 85
 } else { /* IN Endpoint */ 86
 if (USB_P_EP[m]) { 87
 USB_P_EP[m](USB_EVT_IN); 88
 } 89
 } 90
 } 91
 } 92
 LPC_USB->USBDevIntClr = EP_SLOW_INT; 93
 } 94
 95
#if USB_DMA 96
 97
 if (LPC_USB->USBDMAIntSt & 0x00000001) { /* End of Transfer Interrupt */ 98
 val = LPC_USB->USBEoTIntSt; 99
 for (n = 2; n < USB_EP_NUM; n++) { /* Check All Endpoints */ 100
 if (val & (1 << n)) { 101
 m = n >> 1; 102
 if ((n & 1) == 0) { /* OUT Endpoint */ 103
 if (USB_P_EP[m]) { 104
 USB_P_EP[m](USB_EVT_OUT_DMA_EOT); 105
 } 106
 } else { /* IN Endpoint */ 107
 if (USB_P_EP[m]) { 108
 USB_P_EP[m](USB_EVT_IN_DMA_EOT); 109
 } 110
 } 111
 } 112

33

 } 113
 LPC_USB->USBEoTIntClr = val; 114
 } 115
 116
 if (LPC_USB->USBDMAIntSt & 0x00000002) { /* New DD Request Interrupt */ 117
 val = LPC_USB->USBNDDRIntSt; 118
 for (n = 2; n < USB_EP_NUM; n++) { /* Check All Endpoints */ 119
 if (val & (1 << n)) { 120
 m = n >> 1; 121
 if ((n & 1) == 0) { /* OUT Endpoint */ 122
 if (USB_P_EP[m]) { 123
 USB_P_EP[m](USB_EVT_OUT_DMA_NDR); 124
 } 125
 } else { /* IN Endpoint */ 126
 if (USB_P_EP[m]) { 127
 USB_P_EP[m](USB_EVT_IN_DMA_NDR); 128
 } 129
 } 130
 } 131
 } 132
 LPC_USB->USBNDDRIntClr = val; 133
 } 134
 135
 if (LPC_USB->USBDMAIntSt & 0x00000004) { /* System Error Interrupt */ 136
 val = LPC_USB->USBSysErrIntSt; 137
 for (n = 2; n < USB_EP_NUM; n++) { /* Check All Endpoints */ 138
 if (val & (1 << n)) { 139
 m = n >> 1; 140
 if ((n & 1) == 0) { /* OUT Endpoint */ 141
 if (USB_P_EP[m]) { 142
 USB_P_EP[m](USB_EVT_OUT_DMA_ERR); 143
 } 144
 } else { /* IN Endpoint */ 145
 if (USB_P_EP[m]) { 146
 USB_P_EP[m](USB_EVT_IN_DMA_ERR); 147
 } 148
 } 149
 } 150
 } 151
 LPC_USB->USBSysErrIntClr = val; 152
 } 153
 154
#endif /* USB_DMA */ 155
 156
isr_end: 157
 return; 158
} 159

34

APPENDIX III – BITMAP DEFINITIONS

Table 1 – Bitmap Definitions

Bitmap name Section Usage
Dimensions

(XxY pixels)

Number

of sprites

BIRD_BLUE_pixel_data Flappy Bird Bird sprite 34x24 3

BOTTOM_PIPE_pixel_data Flappy Bird Top wall sprite 26x160 1

TOP_PIPE_pixel_data Flappy Bird Bottom wall sprite 26x160 1

BORDER_TOP_pixel_data
Image

Gallery

Windows XP style explorer window

top
320x48 1

IMG_1_pixel_data
Image

Gallery

Demo image 1 (Windows XP

background)
229x172 1

IMG_2_pixel_data
Image

Gallery

Demo image 2 (Ryerson Formula

Racing)
229x172 1

IMG_3_pixel_data
Image

Gallery
Demo image 3 (stickman animation) 92x150 2

GALLERY_NAV_pixel_data
Image

Gallery
Image gallery navigation instructions 81x53 1

MENU_BACK_pixel_data Main menu Windows XP style background 320x240 1

ICON_SET_pixel_data Main menu
Windows XP style icons for

subsections
35x35 3

